1225(微分中值定理,导数应用,二叉树)

这篇博客详细介绍了微分中值定理,包括罗尔定理、拉格朗日定理、柯西定理以及泰勒公式,并探讨了导数在极值问题、函数凹凸性中的应用。此外,还概述了树的基础知识,特别是二叉树的定义、遍历方法和实现。
摘要由CSDN通过智能技术生成

数学基础篇

在这里插入图片描述

1 微分中值定理

1.1 罗尔中值定理

罗尔中值定理:如果 R 上的函数 f(x) 满足以下条件:(1)在闭区间 [a,b] 上连续,(2)在开区间 (a,b) 内可导,(3)f(a)=f(b),则至少存在一个 ξ∈(a,b),使得 f’(ξ)=0。
证明前:基于一个最大值最小值存在定理:闭区间连续函数一定存在最大值和最小值

证明:
证明:因为函数 f(x) 在闭区间[a,b] 上连续,所以存在最大值与最小值,分别用 M 和 m 表示,分两种情况讨论:

  1. 若 M=m,则函数 f(x) 在闭区间 [a,b] 上必为常函数,结论显然成立。
  2. 若 M>m,则因为 f(a)=f(b) 使得最大值 M 与最小值 m 至少有一个在 (a,b) 内某点ξ处取得,从而ξ是f(x)的极值点,又条件 f(x) 在开区间 (a,b) 内可导得,f(x) 在 ξ 处取得极值,由费马引理,可导的极值点一定是驻点,推知:f’(ξ)=0。
    另证:若 M>m ,不妨设f(ξ)=M,ξ∈(a,b),由可导条件知,f’(ξ+)<=0,f’(ξ-)>=0,又由极限存在定理知左右极限均为 0,得证。

通俗理解: 非常数函数情况下,f(a)=f(b) 所以在 (a,b) 内一定有一个波峰或者波谷,这个点的导数就是0;

1.2 拉格朗日中值定理

(1)在闭区间 [a,b] 上连续,(2)在开区间 (a,b) 内可导,(3)则至少存在一个 ξ∈(a,b),使得f(a)-f(b)= f '(ξ)(b-a)成立。

证明:
在这里插入图片描述
ADD 推论:
(1)
在这里插入图片描述(2)
在这里插入图片描述

1.3 柯西中值定理

在这里插入图片描述
和拉格朗日定理关系在于:
在柯西中值定理中,若取g(x)=x时,则其结论形式和拉格朗日中值定理的结论形式相同
因此,拉格朗日中值定理为柯西中值定理的一个特例;反之,柯西中值定理可看作是拉格朗日中值定理的推广。

1.4 泰勒公式

在这里插入图片描述

当x0=0时,泰勒公式为麦克劳林公式

1.4.1 拉格朗日余项和佩亚诺余项

拉格朗日余项就是n阶泰勒余项
佩亚诺余项的展开如下:
在这里插入图片描述
最终可以看到两个余项如下:
在这里插入图片描述

1.4.2常见基本函数的泰勒公式—带佩亚诺余项(x–>0)

在这里插入图片描述一些等价无穷小可以从泰勒公式里得出:

(1):(1+x)a和1+ax等价无穷小(见上公式4)
(2):ln(1+x)和x等价无穷小(见上公式5)
然后:ln(1+x)-x和(-1/2)x2等价无穷小(见上公式5,x左移)

1.4.3 泰勒公式余项的估计(拉格朗日余项)

在这里插入图片描述应用可能性
(1)M很容易找到,或者很容易被估计
(2)x离x0越近,误差越小
(3)n越大,误差越小,所以需要泰勒多项式多展开几项

例子:

在这里插入图片描述在这里插入图片描述

1.4.4常见基本函数的泰勒公式—带拉格朗日余项

在这里插入图片描述

2 导数的应用

2.1 极值问题

在应用数学,现实的问题很多都要转化为优化的问题,优化问题最终都是最值的问题,广泛进行可以优化的函数都是凸函数,很多问题最终都是归结于求极值问题。

什么是极值?:
在这里插入图片描述

2.1.1 费马定理

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值