机器学习笔记(四) 多变量线性回归

本文介绍了多变量线性回归的概念,包括特征扩展、梯度下降算法、特征缩放、步长选择、多项式回归以及正规方程。通过实例探讨了如何处理特征缩放和步长选择问题,同时对比了梯度下降与正规方程在不同情况下的适用性。
摘要由CSDN通过智能技术生成

1.多维特征

   以前我们谈到的变量只有一个,单个特征的训练样本,单个特征的表达式。

   以房价的预测举例,特征除了房屋的大小,还可以有房间数,楼层数,房龄等特征。


   一些特殊字母的定义:

   

   n:代表特征的数量;

   X(i):代表第i个训练实例(特征矩阵的第i行);

   Xj(i):第i个训练实例的第j个特征(特征矩阵的第i行的第j个特征);


   假设函数不再是单变量线性回归时的函数:hθ(x)=θ0+θ1x

   而是:hθ(x)=θ0+θ1x1+θ2x2+...+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值