1.多维特征
以前我们谈到的变量只有一个,单个特征的训练样本,单个特征的表达式。
以房价的预测举例,特征除了房屋的大小,还可以有房间数,楼层数,房龄等特征。
一些特殊字母的定义:
n:代表特征的数量;
X(i):代表第i个训练实例(特征矩阵的第i行);
Xj(i):第i个训练实例的第j个特征(特征矩阵的第i行的第j个特征);
假设函数不再是单变量线性回归时的函数:hθ(x)=θ0+θ1x
而是:hθ(x)=θ0+θ1x1+θ2x2+...+
1.多维特征
以前我们谈到的变量只有一个,单个特征的训练样本,单个特征的表达式。
以房价的预测举例,特征除了房屋的大小,还可以有房间数,楼层数,房龄等特征。
一些特殊字母的定义:
n:代表特征的数量;
X(i):代表第i个训练实例(特征矩阵的第i行);
Xj(i):第i个训练实例的第j个特征(特征矩阵的第i行的第j个特征);
假设函数不再是单变量线性回归时的函数:hθ(x)=θ0+θ1x
而是:hθ(x)=θ0+θ1x1+θ2x2+...+