机器人达到指定位置的方法数(hard)

 

思路

dp[i][j]:走i步,到j位置的方案数量

dp[i][j] = dp[i-1][j-1]+dp[i-1][j+1]

每个位置方案数,都等于上个时刻左右两边方案数,注意n+2和0的位置的padding,可以处理边界情况

#include <iostream>
#include <vector>
using namespace std;

// n:总数,m:起点,k:k步,p:终点
int getPathNum(int n,int m,int k,int p){
    int mod = 1e9+7;
    if(n < 1 || m < 1 || k < 1 || p < 1 || p > n) return 0;
    vector<vector<int>> dp(k+1,vector<int>(n+2,0));
    dp[0][m] = 1;
    for(int i = 1;i <= k;i++){
        for(int j = 1;j <= n;j++){
            dp[i][j] = (dp[i-1][j-1]+dp[i-1][j+1])%mod;
        }
    }
    return dp[k][p];
}

int main(){
    int n,m,k,p;
    cin >> n >> m >> k >> p;
    int res = getPathNum(n,m,k,p);
    cout << res << endl;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值