数字定桩法(上)

数字编码记忆法

数字编码记忆法,就是要为有序的抽象数字赋予形象直观的“编码”,就像情报工作者为不能言明的情报内容赋予情报电码。

我们就是要编制一套能尽可能容易地建立直观且深刻的形象串联的编码词。通过将记忆内容的形象与这些编码词的形象建立牢固、不易忘记的“捆绑”(建立在想象基础上的联想串联,下文中为简写而写的“形象串联”、“想象串联”都为此意),来将记忆内容按数量与顺序依次“捆绑”在数上。下面是我自己的01-50的数字编码对应图表。

01 小树02 玲儿03 三角凳04 汽车05 手套
06 领路07 油漆08 葫芦09 加菲猫10 棒球
11 筷子12 婴儿13 医生14 钥匙15 鹦鹉
16 石榴17 仪器18 腰包19 药酒20 哑铃
21 鳄鱼22 鸳鸯23 和尚24 时钟25 二胡
26 河流27 耳机28 恶霸29 二舅30 森林
31 鲨鱼32 扇儿33 蝴蝶34 山寺35 珊瑚
36 山鹿37 山鸡38 妇女39 胃药40 司令
41 司仪42 柿儿43 死神44 蛇45 师傅
46 饲料47 司机48 spa按摩49 毛泽东50 武士

01-05图像

在这里插入图片描述

06-10图像

在这里插入图片描述

11-15图像

在这里插入图片描述

16-20图像

在这里插入图片描述

21-25图像

在这里插入图片描述

26-30图像

在这里插入图片描述

31-35图像

在这里插入图片描述

36-40图像

在这里插入图片描述

41-45图像

在这里插入图片描述

46-50图像

在这里插入图片描述
制作不易,有帮助的话一键三连吧!!!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方 目前主流的基于深度学习的目标检测算主要分为两类:Two stage和One stage。Two stage方将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算有:R-CNN系列、SPPNet等。 1.2 One stage方 One stage方直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方的优点是速度快,因为省略了Region Proposal生成的过程。One stage方的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
数字定桩编码(Digital Landmark Encoding,DLE)是一种用数字信息来进行地理位置编码的方数字定桩编码是将地理位置信息转换为数字编码的过程。它使用一系列数字来表示地球上的位置,并且可以准确地表示地理位置的经度和纬度。数字定桩编码可以帮助人们更容易地与地理位置进行交流和共享。 数字定桩编码的编码规则通常由国际标准化组织制定,以确保编码的一致性和统一性。这种编码系统可以应用于各种不同的地理信息系统(GIS)和全球定位系统(GPS)中。 数字定桩编码具有很多优点。首先,它可以提供精确的地理位置信息,使得地理数据的传输和共享更加方便快捷。其次,数字定桩编码可以缩减地理位置信息的大小,使得存储和传输成本更低。此外,由于数字定桩编码是数字化的,因此可以方便地进行计算和处理。 数字定桩编码在很多领域都有广泛的应用。例如,在交通导航系统中,可以使用数字定桩编码来确定车辆的当前位置并规划最优路线;在电子商务中,可以使用数字定桩编码来确定用户的地理位置并为其提供个性化的服务;在城市规划中,可以使用数字定桩编码来标记重要的地理地标和公共设施。 总而言之,数字定桩编码是一种用数字信息来进行地理位置编码的方,可以方便地表示和处理地理位置信息。它具有高精度、低成本和广泛的应用领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值