svm中拉格朗日对偶问题的推导

原始问题:min\ \frac{1}{2}\left \| \mathbf{w}\right \|^{2}      s.t. \ \ y_{i}(wx_{i}+b)\geqslant 1 \ \ \ i=1,2,3,\cdots ,n

应用拉格朗日对偶性,求解最优解,对偶问题比较容易求解,可以引入核函数,推广到非线性问题。

构造拉格朗日函数:L(w,b,\alpha )=\frac{1}{2}\left \| \mathbf{w}\right \|^{2}+\sum_{i=1}^{n}\alpha _{i}-\sum_{i=1}^{n}\alpha _{i}y_{i}(wx_{i}+b)L(w,b,\alpha )L(w,b,\alpha )

我们所求的问题为:\min_{w,b}\max_{\mathbf{\alpha },\alpha _{i}\geq 0}L(w,b,\mathbf{\alpha })

转为为对偶问题为:\max_{\mathbf{\alpha },\alpha _{i}\geq 0}\min_{w,b}L(w,b,\mathbf{\alpha })

如果原问题与对偶问题解相同,则需要满足KKT条件:\\ \alpha _{i}\geq 0\\ \alpha _{i}(y_{i}(wx_{i}+b)-1)=0\\ y_{i}(wx_{i}+b)-1\geq 0 \\\frac{dL}{dw}=0 \\\frac{dL}{db}=0

首先求解min_{w,b}L(w,b,\mathbf{\alpha })

w求偏导\frac{dL}{dw}=w-\sum_{i=1}^{n}\alpha _{i}y_{y}x_{i},令偏导为0,得到:w=\sum_{i=1}^{n}\alpha _{i}y_{i}x_{i}

b求偏导\frac{dL}{db}=-\sum_{i=1}^{n}\alpha _{i}y_{i},令偏导为0,得到\sum_{i=1}^{n}\alpha _{i}y_{i}=0

将偏导为0的结果代入到L(w,b,\alpha)中,得到:L(w,b,\alpha )=-\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha _{i}y_{i}x_{i}\alpha _{j}y_{j}x_{j}+\sum_{i=1}^{n}\alpha _{i}

然后我们需要求解的问题为\\ \max_{\alpha,\alpha _{i}\geq 0 }-\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha _{i}y_{i}x_{i}\alpha _{j}y_{j}x_{j}+\sum_{i=1}^{n}\alpha _{i}\\ s.t. \ \ \alpha _{i}\geq 0 \\ \sum_{i=1}^{n}\alpha _{i}y_{i}\geq 0,即:\\ \min_{\alpha,\alpha _{i}\geq 0 }\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha _{i}y_{i}x_{i}\alpha _{j}y_{j}x_{j}-\sum_{i=1}^{n}\alpha _{i}\\ s.t. \ \ \alpha _{i}\geq 0 \\ \sum_{i=1}^{n}\alpha _{i}y_{i}\geq 0

\alpha ^{*}=\{\alpha _{1}^{*},\alpha _{2}^{*},\cdots ,\alpha _{n}^{*}\}为对偶最优问题的解

由KKT中剩余条件知w^{*}=\sum_{i=1}^{n}\alpha ^{*}_{i}y_{i}x_{i} \ \ \ \ b^{*}=y_{j}-\sum_{i=1}^{n}\alpha _{i}^{*}y_{i}(x_{i}\cdot x_{i})

从而得到分离超平面为:f(x)=sign(\sum_{i=1}^{n}\alpha ^{*}_{i}y_{i} (x\cdot x_{i} )+b^{*})

SVM学习算法:

  1. 构造求解最优化问题\\ \min_{\alpha,\alpha _{i}\geq 0 }\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha _{i}y_{i}x_{i}\alpha _{j}y_{j}x_{j}-\sum_{i=1}^{n}\alpha _{i}\\ s.t. \ \ \alpha _{i}\geq 0 \\ \sum_{i=1}^{n}\alpha _{i}y_{i}\geq 0,求得最优解\alpha ^{*}=\{\alpha _{1}^{*},\alpha _{2}^{*},\cdots ,\alpha _{n}^{*}\}
  2. 计算w^{*}=\sum_{i=1}^{n}\alpha ^{*}_{i}y_{i}x_{i} \ \ \ \ b^{*}=y_{j}-\sum_{i=1}^{n}\alpha _{i}^{*}y_{i}(x_{i}\cdot x_{i})
  3. 分类决策函数:f(x)=sign(\sum_{i=1}^{n}\alpha ^{*}_{i}y_{i} (x\cdot x_{i} )+b^{*})

小tips

对于\alpha _{i}^{*}> 0的实例\left ( y_{i},x_{i} \right ),称该实例为支持向量

原因:\alpha _{i}(y_{i}(wx_{i}+b)-1)=0得到:y_{i}(wx_{i}+b)-1=0

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值