CES2025 P HUD技术浅析

1.P HUD介绍

P-HUDPanoramic Head Up Display全景抬头显示

显示区域:覆盖A柱到A柱的整个挡风玻璃的下部,黑色边缘区域内,向所有车内乘客提供清晰的视觉体验

2.宝马CES2025 P HUD技术分析

技术核心:

1)超宽视场角光学系统(专利核心)

通过多组非对称曲面镜组合(专利示意显示至少3组反射面),将投影光线从传统10°扩展至25°水平视场角(覆盖A柱到A柱)

2)超近距高亮激光投影模组

折叠式光路:激光光源多次反射将投影距离压缩至30cm

3)宝马P HUD技术与传统P HUD及蔚来ET9采用的AR HUD技术对比(参数仅供参考,尚无实际测试数据)

技术维度

宝马Panoramic Vision

行业常规P-HUD

AR-HUD(蔚来ET9)

光学设计

3组曲面反射镜+动态校准(专利独有)

单自由曲面反射镜

双自由曲面反射镜组+动态调焦透镜

视场

固定视场角(25°×8°

/

动态光场(支持景深调节)

光源

单蓝光激光+荧光轮

/

RGB三色激光

亮度/对比度

12000尼特 / >50,000:1

内容概要:本文档《DeepSeek本地部署教程(非ollama)》详细介绍了DeepSeek大语言模型的本地部署流程。首先明确了环境要求,包括Python 3.8以上版本、CUDA 11.7(针对GPU用户)、至少16GB RAM以及推荐的操作系统。接着阐述了安装步骤,如克隆代码仓库、创建虚拟环境、安装依赖等。随后讲解了模型下载方式,支持从Hugging Face平台下载不同版本的DeepSeek模型,如DeepSeek-7B、DeepSeek-67B和DeepSeek-Coder。文档还提供了两种运行模型的方式:命令行运行和使用API服务。此外,针对常见的问题,如CUDA相关错误、内存不足和模型加载失败等,给出了详细的解决方案。最后,文档提出了性能优化建议,如使用量化技术减少内存占用、启用CUDA优化等,并强调了安全注意事项,包括定期更新模型和依赖包、注意API访问权限控制等方面。; 适合人群:对大语言模型感兴趣的研究人员、开发者,特别是希望在本地环境中部署和测试DeepSeek模型的技术人员。; 使用场景及目标:①帮助用户在本地环境中成功部署DeepSeek大语言模型;②解决部署过程中可能遇到的问题,如环境配置、模型下载和运行时的常见错误;③提供性能优化建议,确保模型在不同硬件条件下的最佳表现;④指导用户进行安全配置,保障模型和数据的安全性。; 阅读建议:在阅读本教程时,建议按照文档的步骤顺序逐步操作,同时结合实际情况调整环境配置和参数设置。对于遇到的问题,可以参考常见问题解决部分提供的解决方案。此外,性能优化部分的内容有助于提高模型的运行效率,值得深入研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值