最优传输论文(三十五):Adversarial Discriminative Domain Adaptation论文原理

本文介绍了对抗性区分域适应(ADDA)方法,该方法结合了对抗性学习与区分性建模,适用于无监督领域自适应。ADDA通过源域的标签学习区分性表示,然后通过对抗性损失学习非对称映射,将目标数据映射到共享特征空间。相较于依赖生成器的其他方法,ADDA更简单,且在多个数字数据集和跨模态任务上表现出色。实验结果显示,ADDA在标准领域自适应任务和跨模态对象分类任务上超越了现有方法。
摘要由CSDN通过智能技术生成


前言

  • 文章来自2017年的CVPR
  • 本文是本人迁移学习与最优传输系列论文的第35篇,所有系列论文的相关代码在https://github.com/CtrlZ1/Domain-Adaptation-Algorithms,希望各位大佬们不吝点赞,给个Star哦~

摘要

  • 对抗式学习方法是一种很有前途的训练鲁棒深层网络的方法,可以在不同领域生成复杂的样本。尽管存在域偏差或数据集偏差,它们也可以提高识别率:最近的非监督域自适应对抗性方法减少了训练域和测试域分布之间的差异,从而提高了泛化性能。然而,尽管生成性对抗网络(GAN)显示出令人信服的可视化效果,但它们在区分性任
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CtrlZ1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值