文章目录 前言 摘要 1. Introduction 2. Related work 3.广义对抗适应 3.1. Source and target mappings 3.2. Adversarial losses 4. Adversarial discriminative domain adaptation 5. Experiments 5.1. MNIST, USPS, and SVHN digits datasets 5.2. Modality adaptation 5.3. Office dataset 6. Conclusion 代码 前言 文章来自2017年的CVPR 本文是本人迁移学习与最优传输系列论文的第35篇,所有系列论文的相关代码在https://github.com/CtrlZ1/Domain-Adaptation-Algorithms,希望各位大佬们不吝点赞,给个Star哦~ 摘要 对抗式学习方法是一种很有前途的训练鲁棒深层网络的方法,可以在不同领域生成复杂的样本。尽管存在域偏差或数据集偏差,它们也可以提高识别率:最近的非监督域自适应对抗性方法减少了训练域和测试域分布之间的差异,从而提高了泛化性能。然而,尽管生成性对抗网络(GAN)显示出令人信服的可视化效果,但它们在区分性任