最优传输论文(三十五):Adversarial Discriminative Domain Adaptation论文原理
最新推荐文章于 2023-12-16 16:24:58 发布
本文介绍了对抗性区分域适应(ADDA)方法,该方法结合了对抗性学习与区分性建模,适用于无监督领域自适应。ADDA通过源域的标签学习区分性表示,然后通过对抗性损失学习非对称映射,将目标数据映射到共享特征空间。相较于依赖生成器的其他方法,ADDA更简单,且在多个数字数据集和跨模态任务上表现出色。实验结果显示,ADDA在标准领域自适应任务和跨模态对象分类任务上超越了现有方法。
摘要由CSDN通过智能技术生成