整式

运算

常用

立 方 a 3 ± b 3 = ( a ± b ) ( a 2 ∓ a b + b 2 ) 立方a^3\pm b^3=(a\pm b)(a^2\mp ab+b^2) a3±b3=(a±b)(a2ab+b2)

配方

a x 2 + b x + c = a ( x + b 2 a 2 + c − a ( b 2 a 2 ) ) ax^2+bx+c=a(x+\frac{b}{2a}^2+c-a(\frac{b}{2a}^2)) ax2+bx+c=a(x+2ab2+ca(2ab2))

多项式长除法

多项式长除法


二次函数 f ( x ) = a x 2 + b x + c = 0 ( a ≠ 0 ) f(x)=ax^2+bx+c=0(a\ne 0) f(x)=ax2+bx+c=0(a=0)

常用

Δ = b 2 − 4 a c \Delta =b^2-4ac Δ=b24ac
根 式 x 1 , 2 = − − b b 2 − 4 a c 2 a 根式x_{1,2}=-\frac {-b\sqrt{b^2-4ac}}{2a} x1,2=2abb24ac
韦 达 定 理 { x 1 + x 2 = − b a x 1 x 2 = c a 韦达定理\begin {cases}x_1+x_2=-\frac{b}{a}\\ x_1x_2=\frac{c}{a}\end {cases} {x1+x2=abx1x2=ac

其他

  • 有 理 数 系 的 方 程 有 根 a + b 则 必 有 根 a − b 有理数系的方程有根a+\sqrt {b}则必有根 a-\sqrt{b} a+b ab
  • 与有理数系的方程_ a x 2 + b x + c = 0 ( a ≠ 0 ) ax^2+bx+c=0(a\ne 0) ax2+bx+c=0(a=0)的二根互为相反数的新方程 a x 2 − b x + c = 0 ax^2-bx+c=0 ax2bx+c=0
    互为倒数的新方程 c x 2 + b x + a = 0 cx^2+bx+a=0 cx2+bx+a=0
    互为负倒数的新方程 c x 2 − b x + a = 0 cx^2-bx+a=0 cx2bx+a=0
  • f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c满足 a > b > c , f ( x ) = 0 a>b>c,f(x)=0 a>b>c,f(x)=0,则 { a > 0 c < 0 a + b + c = 0 \begin{cases}a>0\\c<0\\a+b+c=0\end{cases} a>0c<0a+b+c=0
  • b=0时,函数为偶函数

三次函数 f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c

常用

Δ = 4 ( b 2 2 − 3 a c 2 ) \Delta =4(\frac{b}{2}^2-\frac{3ac}{2}) Δ=4(2b223ac)

图像

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值