数学基础篇 整式(二)

本文详细介绍了整式的概念,包括字母表示数、单项式和多项式的定义及性质,强调了单项式的系数和次数计算。接着,讲解了整式加减的重点——同类项合并,阐述了合并同类项的步骤和法则,并通过实例解析了去括号的化简过程。最后,总结了整式加减的运算法则,强调了化简求值的步骤和注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整式的知识结构

2a6ddf5ced5f443fac07554c5af834c0.png

目录

整式的知识结构

整式

一,整式概念

1. 字母表示数

2.如何分析题目,找数量

3.单项式

4.多项式

整式加减

一,同类项

1.1 合并同类项

1.2 合并同类项的基本步骤

1.3 小结

二,如何做有括号的?

去括号化简例子

三,整式加减的运算法则


 

整式

一,整式概念

单项式和多项式统称为整式

1. 字母表示数

比M1的数:M +1 ;

比K30%的数:0.7K;

a与-5的和的3:3(a -5);

b与6的差的1/4: 1/4(b - 6);

x与y的平方和:x2 + 32

2.如何分析题目,找数量

例子:

3与2的和的3倍,列式子

3(3+2)

看题列式的注意事项

圈画关键词,确定数量关系:和,差,积,商,平方等;

抓关键词句,明确它们的意义与关系

如  和,差,积,商;        大,小,倍,分等;

如        比......提高/降低,顺水/逆水,打折等;

理清语句层次,明确运算顺序;

牢记概念和公式

数与字母,字母与字母相乘省略乘号,100t  vt

数与字母相乘时,数字需在前:2k

除法运算,一般按分数形式写;

带分数与字母相乘时,可以化成假分数;3/4 n

带单位时,和的形式要加括号;(5x + 2t + 3c)

3.单项式

像这样表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式

如  0.8p , mn  , d2h  , -n ,2/3x  ,x等等...

注意点像 y -1 ,m + n 等都不是单项式

分母含有未知数的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。例如,1/x不是单项式

单项式的数字因数叫做这个单项式的系数

100t的积,100就是积的数字因数

系数的字面意思:有关系的数字,例如100t 表示的也就是(100个t相加)

系数”可以解释为“有多少个未知数(相加的和)

例如:

100t的系数是100;

0.8p的系数是0.8;

-2/3xy的系数是-2/3;

单项式的所有字母的指数的和叫做这个单项式的次数

例如        2x^2y^3的次数是5;

5a^4的次数是4;

X的次数是1;

-t的系数是-1;                (-1 x -t)

t 的系数是1;     (1 x t)

任意不为零的0次方都为1.前提一定是不为零的底数 

 

单项式的系数是“1”或者“-1”时,1通常省略不写

π是数字,不是字母

单项式的次数是所有字母的指数和,不能漏加。如hc3d2 的次数是6

单项式的次数只与字母指数有关,不能多加。如32x3y3 的次数是6

4.多项式

几个单项式的和叫做多项式

多项式的每个单项式叫做多项式的项,其中不含字母的叫做常数项,如2y^3 + 5x^2 + 18        这个多项式叫做:三次三项式,不含字母18叫做常数项

多项式的次数

多项式里次数最高的次数叫做多项式的次数

如2y^3 + 5x^2 的最高次数是3  叫做三次二项式

 

整式加减

一,同类项

同类项的定义:所含字母相同的,并且字母指数也相同的项叫做同类项     注:几个常数项也是!

例子:5a + 6a    6a^2 + 8a^2

同类项的特征:

“两个相同”:一是所含字母完全相同,二是相同字母的指数相同;

“两个无关”:同类项只与字母及其指数有关,与系数,字母顺序无关

1.1 合并同类项

合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项

例子:5a + 6a = 11a    6a^2 + 8a^2 = 14a^2

 

合并同类项的法则:合并同类项后,所得项的系数是合并前个同类项的系数的和,

且字母连同指数不变

 

1.2 合并同类项的基本步骤

一找,找出多项式中的同类项,不同的同类项用不同的标记标出

二移,利用加法的交换律,结合律,将不同的同类项集中到不同括号内

三并,将同一括号的同类项相加

说明:运算结果通常按照同一个字母的指数“从大到小”或“从小到大”顺序排列

1.3 小结

(1) 合并同类项对不同的同类项可用“_”,“=”,“﹏”等符号做标记

(2) 运用交换律,结合律将多项式变形时,不要丢掉各项系数的符号;

(3) 当同类项互为相反数时,合并结果为0

(4) 合并同类项时,只能把同类项合并成一项,不是同类项的不能合并,同时注意不要漏掉没有同类项的项

(5) 在求多项式的值时,可以先将多项式中的同类项合并,适当化简,然后再求值,这种做法可以简化计算。

二,如何做有括号的?

去括号化简例子

 5 - (2+6)= -3    如果我直接去括号 5 - 2 + 6 = 9,这样结果就不对了

正确化简去括号:5 -2 - 6 = -3 

假如张三有100元,买了一个西瓜15元,和一袋薯片10元列式:100 - (15 + 10)= 75

100 - 15 + 10如果直接去括号计算的话就明显不对了

正确的是100元减去15减去10:100 - 15-   10

5 + (2 - 6)去括号:5 + 2 - 6 结果也是一样的

再多试几个例子就会发现一个规律

如果括号外的因数是正数,去括号后原括号内各项的符号不变

如果括号外的因数是负数,去括号后原款号内各项的符号相反

去括号,看符号:是“正”号,不变号;

是“-”号,全变号;

注意符号变化规律,不要漏乘括号前面的倍数,不要丢项

根据这个规律类比到整式中

 

例1:-5a + (3a - 2) - (3a -7)

        -5a + 3a -2 - 3a + 7

        (-5 + 5 -3)a + (- 2 + 7)

        化简后:-3a + 5

例2:12(𝑥−0.5) 

        12𝑥−12×0.5 

化简后:12𝑥−6

遇到乘法的式子时

我个人觉得不用考虑什么变不变号有时会很麻烦,直接看下列的去括号,这样理解更简便

24b6c020809b43d9ac0a37d4f66879bb.png

 这个5 - ( 2 + 6)也可以,把“ -”号可以看成-1,前面说过-1或1都是省略不写的

-1 x 2 = -2

-1 x 6 = -6

后:5 - 2 - 6

f91d9bc121954332a5a69b59e54bb9be.jpeg

 

三,整式加减的运算法则

一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项

注意:

bc013035615f47deade672b656aae8a8.jpeg

 

化简求值的思路:先化简,再求值;

化简求值的书写格式

去括号;合并同类项;写出条件;代入数值;求出结果。

化简求值的过程中体会到了,类比,数式通性的思想

注:- 可以表示为-1,-1𝑥 可以表示为 −𝑥,1或者-1通常是省略不写的

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值