【科研基础】联邦学习

本文探讨了联邦学习领域的最新进展和未解问题,通过Kairouz等人的研究介绍了联邦学习的基础,并引用Wang等人提出的ProgFed,这是一种有效的、通信和计算效率高的渐进式训练方法。联邦学习模型通常由多个特征提取块和任务头组成,通过损失函数评估其性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[1]. Kairouz, Peter, et al. “Advances and open problems in federated learning.” Foundations and trends® in machine learning 14.1–2 (2021): 1-210.
[2]. Wang, Hui-Po, et al. “ProgFed: effective, communication, and computation efficient federated learning by progressive training.” International Conference on Machine Learning. PMLR, 2022.

M ( ⋅ , x )  ⁣ : R n → R k \mathcal{M}(\cdot,\mathbf{x})\colon\mathbb{R}^n\to\mathbb{R}^k M(,x):RnRk:模型;
x ∈ R d \mathbf{x}\in\mathbb{R}^d xRd:模型参数,权重;
M : = G S ∘ ◯ ⁡ i = 1 S E i =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

db_1024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值