推荐系统简述
当下我们已经处于信息爆炸的时代,要从庞大的各类数据库中提取有用的信息,并能为目标用户提供他们需要的信息变得越来越困难。推荐系统正是为了解决这个问题所提出的。 推荐系统目前在很多领域都发挥着重要的角色,比如电子商务领域(淘宝,天猫,Amazon等),视频推荐(抖音,快手,B站等),社交网络(腾讯,Facebook,Twitter等),新闻推送(今日头条,网易新闻等)。
推荐系统根据用户的兴趣以及需求等,通过推荐算法从各类数据库信息里挖掘出用户可能感兴趣的内容,并将得到的项目以个性化的形式推荐给用户。推荐系统在当下海量数据时代,可以非常有效地解决信息过载的问题,也解决了无穷无尽的信息(例如:新闻,商品以及视频等)与用户有限的时间精力之间的矛盾。随着移动互联网的迅猛发展,人们花费在移动端的碎片时间越来越多,一方面,推荐系统千人千面的特点使得用户的碎片时间得到了最大化效益,帮助用户快速地发现自己感兴趣以及高质量的信息,用户浏览到自己不喜欢或者厌恶的内容可能性降低,提升用户体验;另一方面,推荐系统使得用户花费在移动端APP的时间变得更多,增加了用户粘性,推荐方法也可以引导用户点击或者购买,提高了转化率,进而提高互联网企业效益。据报道,推荐系统给Amazon带来了35%的销售收入,给Netflix带来了高达75%的消费,而Youtube主页上60%的浏览来自推荐服务。我国最具有代表性的商用推荐系统,一个是淘宝天猫的首页推荐,另一个是今日头条的新闻信息流推荐。<