卡特兰数(Catalan数)

【引入】

卡特兰数是一种经典的组合数,经常出现在各种计算中,其前几项为 : 
   1, 2, 5, 14, 42, 
   132, 429, 1430, 4862, 16796, 
   58786, 208012, 742900, 2674440, 9694845, 
   35357670, 129644790, 477638700, 1767263190, 
   6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 
   4861946401452, ...

【计算公式】

C_{n}=\frac{1}{n+1}\binom{2n}{n}=\frac{(2n)!}{(n+1)!n!}

【递推式】

C(n)=C(n-1)*((4*n-2)/(n+1))

【取模】

因为在大数卡特兰数的计算时经常会用到取模运算,这里的取模运算需要记得有一点证明:

【典型应用】

1.括号化问题

  矩阵链乘: P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n)种)

2.出栈次序问题

  一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?
  类似: 
  (1) 有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)
  (2) 在圆上选择2n个点,将这些点成对连接起来,使得所得到的n条线段不相交的方法数。 

3.将多边形划分为三角形问题

  将一个凸多边形区域分成三角形区域的方法数? 
  类似:
       (1)一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路? 
       (2)在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数? 
   
4.给顶节点组成二叉树的问题
  给定N个节点,能构成多少种形状不同的二叉树? 
  先去一个点作为顶点,然后左边依次可以取0至N-1个相对应的,右边是N-1到0个,两两配对相乘,就是h(0)*h(n-1) + h(2)*h(n-2) +…+ h(n-1)h(0)=h(n)(能构成h(N)个)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值