2-4 机器学习-- 梯度提升树

本文介绍了梯度提升树的基本概念,包括其作为决策树集成算法的特性,以及在分类任务中的应用。重点讲解了梯度提升树的残差计算和学习率的作用,强调了friedman_mse在评估模型准确性中的意义。同时,提到了梯度下降和梯度上升的概念,并简要概述了梯度提升在二分类问题中的原理。
摘要由CSDN通过智能技术生成

一、梯度提升树原理

梯度爆炸:
梯度:也就是导数
梯度提升树建立在普通决策基础上的,也由多颗树构建。
梯度提升树用于分类,也是森林,还是集成算法,用到的是,回归树。
基本树(决策树,分类树)
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.ensemble import GradientBoostingClassifier
from sklearn import tree

# X数据:上网时间和购物金额
# y目标:学生年级
X = np.array([[800,3],[1200,1],[1800,4],[2500,2]])
y = np.array([14,16,24,26])

# 梯度提升树算法
# 用到分类树
gbdt = GradientBoostingClassifier(n_estimators=10)

# 训练
gbdt.fit(X,y)

# 预测
gbdt.predict(X)

# 查看每一颗树的预测结果
gbdt[0,0].predict(X)
gbdt[-1,0].predict(X)

-----------------------------------------------
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值