线性代数知识点

已知基础解系求A(Ax=0)

求一个齐次线性方程组,使它的基础解系为 α 1 , α 2 ( 假 设 为 4 维 列 向 量 ) \alpha _1,\alpha _2(假设为4维列向量) α1,α2(4)
n − r ( A ) = 2 , 且 n = 4 ⇒ r ( A ) = 2 n-r(A)=2,且n=4\Rightarrow r(A)=2 nr(A)=2,n=4r(A)=2
∵ A ( α 1 , α 2 ) = 0 \because A(\alpha _1,\alpha _2)=0 A(α1,α2)=0,转置得 [ α 1 T α 2 T ] A T = 0 \begin{bmatrix} \alpha _1^T\\ \alpha _2^T \end{bmatrix}A^T=0 [α1Tα2T]AT=0
B x = [ α 1 T α 2 T ] x = 0 Bx=\begin{bmatrix} \alpha _1^T\\ \alpha _2^T \end{bmatrix}x=0 Bx=[α1Tα2T]x=0,
n − r ( B ) = 2 n-r(B)=2 nr(B)=2,从而 B x = 0 Bx=0 Bx=0的基础解系是 A T A^T AT的列向量,所求方程组是不唯一的

矩阵A可相似对角化

  • n 阶方阵 A 可对角化的充分必要条件是 A 有 n 个线性无关的特征向量.
  • 若n阶矩阵4 有n 个不同的特征值 λ 1 , λ 2 , … , λ n λ_1 ,λ_2 ,…,λ_n λ1,λ2,,λn则 A 可相似对角化
  • n 阶矩阵A 可相似对角化的充分必要条件是A的每个特征值中,线性无关的特征向量的个数恰好等于该特征值的重数
  • 求可逆矩阵 P使 P − 1 A P = Λ P^{-1}AP = \Lambda P1AP=Λ解题步骤:
    • 1.求出矩阵 A(设为 3 阶)的特征值 λ 1 , λ 2 , λ 3 λ_1 ,λ_2 ,λ_3 λ1,λ2,λ3(可以有重根)
    • 2.求出线性无关的特征向量 α 1 , α 2 , α 3 \alpha_1 , \alpha_2 , \alpha_3 α1,α2,α3
    • 3.构造可逆矩阵 P = ( α 1 , α 2 , α 3 ) P =(\alpha_1 , \alpha_2 , \alpha_3) P=(α1,α2,α3)
    • 则 有 P − 1 A P = Λ = [ λ 1 λ 2 λ 3 ] 则有\boldsymbol{P}^{-1} \boldsymbol{A P}=\boldsymbol{\Lambda}=\left[\begin{array}{ccc} \lambda_{1} & & \\ & \lambda_{2} & \\ & & \lambda_{3} \end{array}\right] P1AP=Λ=λ1λ2λ3
    • A ( α 1 , α 2 , α 3 ) = ( λ 1 α 1 , λ 2 α 2 , λ 3 α 3 ) ⇔ A P = P Λ \boldsymbol{A}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right)=\left(\lambda_{1} \boldsymbol{\alpha}_{1}, \lambda_{2} \boldsymbol{\alpha}_{2}, \lambda_{3} \boldsymbol{\alpha}_{3}\right)\Leftrightarrow \boldsymbol{A P}=\boldsymbol{P} \boldsymbol{\Lambda} A(α1,α2,α3)=(λ1α1,λ2α2,λ3α3)AP=PΛ

实对称矩阵

  • 实对称矩阵必可相似对角化
  • 实对称矩阵的属于不同特征值对应的特征向量相互正交
  • 设 A 为n 阶实对称矩阵,则必存在正交阵 Q,使得 Q − 1 A Q = Q T A Q = Λ Q^{-1}AQ = Q^TAQ = \Lambda Q1AQ=QTAQ=Λ.
  • 实对称矩阵用正交矩阵相似对角化解题步骤
    • 1.求出矩阵 A(设为 3 阶)的特征值 λ 1 , λ 2 , λ 3 λ_1 ,λ_2 ,λ_3 λ1,λ2,λ3
    • 2.求出线性无关的特征向量 α 1 , α 2 , α 3 \alpha_1 , \alpha_2 , \alpha_3 α1,α2,α3
    • 3.改造特征向量
      • 如果特征值不同,特征向量已正交,只需单位化,记为 γ 1 , γ 2 , γ 3 \gamma_1,\gamma_2,\gamma_3 γ1,γ2,γ3
      • 如果特征值有重根,要先判断特征向量是否已正交?若已正交则只需单位化;若不正交则要正交化处理,记为 γ 1 , γ 2 , γ 3 \gamma_1,\gamma_2,\gamma_3 γ1,γ2,γ3
    • 4.把上述特征向量 γ 1 , γ 2 , γ 3 \gamma_1,\gamma_2,\gamma_3 γ1,γ2,γ3 构成正交矩阵 Q =( γ 1 , γ 2 , γ 3 \gamma_1,\gamma_2,\gamma_3 γ1,γ2,γ3 ).
  • 施密特正交化: 设向量组 α 1 , α 2 , α 3 \alpha_1 , \alpha_2 , \alpha_3 α1,α2,α3线性无关,其标准正交化的方法:
    • β 1 = α 1 β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 β 3 = α 3 − ( α 3 , β 1 ) ( β 1 , β 1 ) β 1 − ( α 3 , β 2 ) ( β 2 , β 2 ) β 2 \begin{array}{l} \boldsymbol{\beta}_{1}=\boldsymbol{\alpha}_{1} \\ \boldsymbol{\beta}_{2}=\boldsymbol{\alpha}_{2}-\frac{\left(\boldsymbol{\alpha}_{2}, \boldsymbol{\beta}_{1}\right)}{\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{1}\right)} \boldsymbol{\beta}_{1} \\ \boldsymbol{\beta}_{3}=\boldsymbol{\alpha}_{3}-\frac{\left(\boldsymbol{\alpha}_{3}, \boldsymbol{\beta}_{1}\right)}{\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{1}\right)} \boldsymbol{\beta}_{1}-\frac{\left(\boldsymbol{\alpha}_{3}, \boldsymbol{\beta}_{2}\right)}{\left(\boldsymbol{\beta}_{2}, \boldsymbol{\beta}_{2}\right)} \boldsymbol{\beta}_{2} \end{array} β1=α1β2=α2(β1,β1)(α2,β1)β1β3=α3(β1,β1)(α3,β1)β1(β2,β2)(α3,β2)β2
    • 再将 β 1 , β 2 , β 3 \beta_1,\beta_2,\beta_3 β1,β2,β3单位化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值