人脸关键点预测以及归一化

本文探讨了在EVP中的人脸关键点预测,重点在于如何将预测的关键点进行0到1之间的归一化,并介绍了使用face_alignment框架进行人脸关键点检测和根据图像尺寸放大显示的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.EVP中的人脸归一化

EVP中的预测的关键点都在0~1之间

 所以,如果想要可视化,就比如进行放大

就是将所有的关键点都按照canves的width,和height进行等比例放大

将所有的landmarks都乘以width,

landmarks=np.reshape(lm,(-1,2))*256

然后可视化显示

 

 2.使用face_alignment框架

使用face_alignment框架,输入一张图片,返回的就是根据图像放大的点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

种豆得瓜er

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值