电容充放电时间公式推导

       

目录

1、电容充电电流推导          

2、电容充电电压/时间推导 

2.1 微分求解 

 2.2 拉普拉斯求解

拉普拉斯变换表 


  由于电容两端的电压不能突变,当向电容两端施加电压的时候,电容的电压会会缓慢上升,同时充电电流也会下降。本文就电容的充电过程推导一下电容的充电电流i(t),充电时间v(t)以及充电时间。

        本文主要以公式推导为主,描述性的段落较少。

电容充电电压随时间变化的曲线

电容充电电流随时间变化的曲线

        电容充电的简化电路如下所示,充电电压为定值,限流电阻为R,C为充电电流。电容两端的电压为${​{\rm{V}}_{\rm{C}}}$

电容充电的简化电路

1、电容充电电流推导          

        充放电时,由于电阻和电容是串联的,所以电路中电流处处相等为$i$。我们要计算的则是电流对时间的函数$i(t)$

        根据KCL方程可以得出:${V_S} = i(t)*R + {V_C}$       (1)

        电容和电荷的关系为:$q = {V_C}*C$                         (2)

        电荷和电流的关系为:$i = {​{dq} \over {dt}}$                              (3)

由式(1)(2)(3)可得

${V_S} = i(t)*R + {V_C} {\rm{ }} = i(t)*R + {q \over C}$          (4)

        电流$i(t)$

$i(t) = {​{​{V_s}*c - q} \over {RC}}$                    (5)

        整理式(5)得

${​{dq} \over {​{V_s}*C - q}} = {​{dt} \over {RC}}$         (6)

        对式(6)积分可得

$ - \left. {\ln ({V_s}*C - q)} \right|_0^q = {t \over {RC}}$          (7)

        整理可得

$q = {V_S}*C*(1 - {e^{ - {\textstyle{t \over {RC}}}}})$        (8)

        由式(3)可知,对q求导即可得到充电电流$i(t)$

$i(t) = {​{​{V_S}} \over {RC}} \cdot {e^{ - {\textstyle{t \over {RC}}}}}$        (9)

2、电容充电电压/时间推导 

        如电容充电电流推导一样,同样使用了(1)式。

        电容的电压和电流关系为

$i = C{​{d{V_C}} \over {dt}}$          (10)

        结合式(1)(10)得出

${V_S} = RC{​{d{V_C}} \over {dt}} + {V_C}$           (11)

        该方程的解便是电容充电时电压对时间的函数${V_C}(t)$

        求解该方程的求解给出如下两种方式。

2.1 微分求解 

        微分方程求解是一种直接的求解方式。

        整理式(11)得到

${​{d{V_C}} \over {​{V_S} - {V_C}}} = {​{dt} \over {RC}}$              (12)

        对式(12)两端直接积分得到

${V_C} = {V_s}(1 - {e^{ - {t \over {RC}}}})$           (13)

        通过数学变换不难得出充电时间t。

$t = - RC*\ln (1 - {​{​{V_{\rm{C}}}} \over {​{V_S}}})$            (14)

 2.2 拉普拉斯求解

        另一中方法则是利用拉普拉斯求解。该方法在高阶微分方程求解中相对容易。对于本文所阐述的电容充放电而言,采用拉普拉斯求解比较繁琐。但是此求解方法的重要性不可忽视,故此本文讲述以此方法对电容充放电过程求解。

        我们的目的是对式(11)求解得到${V_c}$。首先将式(11)进行拉普拉斯变换(常见的拉普拉斯变换表放在文末)。变换结果如下:

${​{​{V_s}} \over s} = RC{V_c} \cdot s + {​{​{V_c}} \over s}$ (15)

        对上式进行数学变换;

${V_c} = {V_s}{1 \over {RC{s^2} + 1}} = {V_s}\left( {​{1 \over s} - {1 \over {s + {1 \over {RC}}}}} \right)$          (16)

        对式(16)进行拉普拉斯反变换即可得到时域中的方程解${V_C} = {V_s}(1 - {e^{ - {t \over {RC}}}})$。进一步整理同样可以得到式(14)所示的充电时间t。

注:本次变换在条件下求解,如电容的初始电压值不为零本文推导的结论不能直接使用,需要将初始值考虑进去重新计算

拉普拉斯变换表 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值