目录
由于电容两端的电压不能突变,当向电容两端施加电压的时候,电容的电压会会缓慢上升,同时充电电流也会下降。本文就电容的充电过程推导一下电容的充电电流i(t),充电时间v(t)以及充电时间。
本文主要以公式推导为主,描述性的段落较少。
电容充电电压随时间变化的曲线
电容充电电流随时间变化的曲线
电容充电的简化电路如下所示,充电电压为定值,限流电阻为R,C为充电电流。电容两端的电压为。
电容充电的简化电路
1、电容充电电流推导
充放电时,由于电阻和电容是串联的,所以电路中电流处处相等为。我们要计算的则是电流对时间的函数
根据KCL方程可以得出: (1)
电容和电荷的关系为: (2)
电荷和电流的关系为: (3)
由式(1)(2)(3)可得
(4)
电流为
(5)
整理式(5)得
(6)
对式(6)积分可得
(7)
整理可得
(8)
由式(3)可知,对q求导即可得到充电电流
(9)
2、电容充电电压/时间推导
如电容充电电流推导一样,同样使用了(1)式。
电容的电压和电流关系为
(10)
结合式(1)(10)得出
(11)
该方程的解便是电容充电时电压对时间的函数。
求解该方程的求解给出如下两种方式。
2.1 微分求解
微分方程求解是一种直接的求解方式。
整理式(11)得到
(12)
对式(12)两端直接积分得到
(13)
通过数学变换不难得出充电时间t。
(14)
2.2 拉普拉斯求解
另一中方法则是利用拉普拉斯求解。该方法在高阶微分方程求解中相对容易。对于本文所阐述的电容充放电而言,采用拉普拉斯求解比较繁琐。但是此求解方法的重要性不可忽视,故此本文讲述以此方法对电容充放电过程求解。
我们的目的是对式(11)求解得到。首先将式(11)进行拉普拉斯变换(常见的拉普拉斯变换表放在文末)。变换结果如下:
(15)
对上式进行数学变换;
(16)
对式(16)进行拉普拉斯反变换即可得到时域中的方程解。进一步整理同样可以得到式(14)所示的充电时间t。
注:本次变换在条件下求解,如电容的初始电压值不为零本文推导的结论不能直接使用,需要将初始值考虑进去重新计算