AT-MFEA--解决异构多任务优化问题

本文提出了一种新的AT-MFEA方法,通过改进的秩损失函数和渐进式高斯表示模型解决异构多任务问题。它利用仿射变换弥合任务间的差距,并通过学习映射来克服混沌匹配。然而,文章也指出了方法在处理决策变量维度不一致等问题上的局限性。
摘要由CSDN通过智能技术生成

AT-MFEA–解决异构多任务优化问题

title:Affine Transformation-Enhanced Multifactorial Optimization for Heterogeneous Problems

author:Xiaoming Xue , Kai Zhang, Kay Chen Tan, Liang Feng , Jian Wang, Guodong Chen, Xinggang Zhao, Liming Zhang, and Jun Yao.

journal:IEEE TRANSACTIONS ON CYBERNETICS(TCYB)

DOI: https://doi.org/10.1109/TCYB.2020.3036393.

code:https://github.com/intLyc/MTO-Platform/tree/master/MTO/Algorithms/Multi-task/Multi-population/AT-MFEA

1.主要贡献:

1)提出了一种新的秩损失函数,来获取任务间映射。

2)利用渐进式高斯表示模型,推导出了仿射变换的封闭解,以弥合不同任务间的差距。

2.问题提出:

​ 现有的映射方法首先根据适应度值对解进行排序。然后,使用排序的成对解中提取的训练样本来学习任务间映射。然而,这种成对学习存在一个严重的问题,称为混沌匹配。也就是说,我们需要的到的映射关系应该是如下图(b)中所示的情形,而实际上出现最多的是下图(a)所示的情形。因为 f ( x ) f(x) f(x)对于不同的 x x x可能存在相同的值,只考虑秩相关性时就会出现映射交叉的情况。

​ 解决混沌匹配的一种简单而有效的方式是,不仅要考虑秩相关性,还要考虑拓扑一致性。

image-20240305195446787

3.AT-MFEA:

1)秩损失函数
φ ∗ = min ⁡ φ ∈ Φ ∫ x ∣ ∣ R [ f s ( x ) ] − R [ f t ( φ ( x ) ) ] ∣ ∣ 2 φ^∗ = \min_{φ∈\Phi }\displaystyle \int_x || R[f^s(x)] − R[f^t(φ(x))] ||^2 φ=φΦminx∣∣R[fs(x)]R[ft(φ(x))]2
其中, ϕ \phi ϕ表示能够将解从源域映射到目标域的转换操作, Φ \Phi Φ表示完整的映射空间, R R R表示将原始适应度景观转换为基于秩的景观的秩操作, f s ( ⋅ ) f^s(·) fs() f t ( ⋅ ) f^t(·) ft()分别表示源任务和目标任务的目标函数。由于上式中存在积分操作,直接求解是不可行的,因此,使用代理模型来替代,则秩损失函数改进如下:
φ ∗ = min ⁡ φ ∈ Φ ∫ x ∣ ∣ R [ f ^ s ( x ) ] − R [ f ^ t ( φ ( x ) ) ] ∣ ∣ 2 φ^∗ = \min_{φ∈\Phi }\displaystyle \int_x || R[\hat f^s(x)] − R[\hat f^t(φ(x))] ||^2 φ=φΦminx∣∣R[f^s(x)]R[f^t(φ(x))]2
其中, f ^ s ( ⋅ ) \hat f_s(·) f^s() f ^ t ( ⋅ ) \hat f_t(·) f^t()分别表示源任务和目标任务的表示模型。

2)渐进式高斯表示模型:
p ^ t p ( x ) ∼ N ( μ ^ , σ ^ 2 ) , μ ^ = ( μ ^ 1 , μ ^ 2 , . . . , μ ^ n ) , σ ^ 2 = ( σ ^ 1 2 , σ ^ 2 2 , . . . , σ ^ n 2 ) \hat p^p_t (x) ∼ N (\hat μ, \hat σ^2),\hat μ = (\hat μ_1,\hat μ_2,...,\hat μ_n),\hat σ^2 = (\hat σ^2_1 , \hat σ^2_2 ,..., \hat σ^2_n ) p^tp(x)N(μ^,σ^2),μ^=(μ^1,μ^2,...,μ^n),σ^2=(σ^12,σ^22,...,σ^n2)
其中,
μ ^ j = ( 1 − α ) 1 N ∑ k = 1 t α t − k ∑ i = 1 N x i j k σ ^ j 2 = ( 1 − α ) 1 N − 1 ∑ k = 1 t α t − k ∑ i = 1 N ( x i j k − μ j k ) 2 . \hat μ_j = (1 − α) \frac1N\sum^t_{k=1} α^{t−k} \sum^N_{i=1} x^k_{ij}\\ \hat σ^2_j = (1 − α) \frac1 {N − 1}\sum^ t _{k=1} α^{t−k} \sum^N_{i=1} (x^k_{ij} − μ^k_j)^2. μ^j=(1α)N1k=1tαtki=1Nxijkσ^j2=(1α)N11k=1tαtki=1N(xijkμjk)2.
根据上述表示模型,秩损失函数可以表示如下:
φ ∗ = min ⁡ φ ∈ Φ ∫ x ∣ ∣ R [ p s ( x ) ] − R [ p t ( φ ( x ) ) ] ∣ ∣ 2 φ^∗ = \min_{φ∈\Phi}\int_x|| R[p^s(x)] − R[p^t(φ(x))] ||^2 φ=φΦminx∣∣R[ps(x)]R[pt(φ(x))]2
其中, p s ( ⋅ ) p^s(·) ps() p t ( ⋅ ) p^t(·) pt()分别表示源任务和目标任务的高斯渐进表示模型。

3)源-目标域的仿射变换

此处的映射包含线性和非线性映射,本文只考虑线性映射,则仿射变换可以表示如下:
x ~ = φ a ( x ; θ ) = x A + b \tilde x = φ_a(x; θ) = xA + b x~=φa(x;θ)=xA+b
x ~ 1 × n \tilde x_{1×n} x~1×n表示目标域的转移解, φ a ( ⋅ ) φ_a(·) φa()表示仿射变换, x 1 × n x_{1×n} x1×n是源域的解, θ = [ a , b ] θ=[a,b] θ=[ab]表示仿射变换的参数, A n × n A_{n×n} An×n是一个收缩转换,和 b 1 × n b_{1×n} b1×n表示一个平移转换。

解得仿射变换的参数如下:
{ A = L s L t − 1 b = μ t − μ s A . \begin{cases} A = L_sL^{−1}_t \\ b = μ_t − μ_sA. \end{cases} {A=LsLt1b=μtμsA.
其中, L s L_s Ls L t L_t Lt分别表示对源和目标逆协方差矩阵的Cholesky分解得到的下三角矩阵, μ t \mu_t μt μ s \mu_s μs分别表示源和目标域的均值。

4)算法实现

AT-MFEA通过使用如下算法(基于映射的任务间交叉)替换MFEA中的任务间交叉实现的。基于映射的任务间交叉包括四步:

首先,构建表示模型(渐进式高斯表示模型);其次,学习任务间映射(参数 A i j , b i j A_{ij},b_{ij} Aij,bij A j i , b j i A_{ji},b_{ji} Aji,bji);接着,将解 x i , x j x_i,x_j xi,xj变换为 x i ′ , x j ′ x'_i,x'_j xi,xj;最后,分别对 x i ′ , x j x'_i,x_j xi,xj x i , x j ′ x_i,x'_j xi,xj使用交叉算子

image-20240305205605502

4.思考

1)在多任务优化中,异构问题不仅包含最优解距离较远,也包含决策变量维度不一致等。AT-MFEA在前一个问题上可以得到很好的效果,但却未能考虑后者。

2)正如文章中所说的那样,可以考虑使用更复杂的表示模型以及高学习能力的转换。

3)推广到多目标优化也会引入一些新的问题,如秩相关性的问题,单目标可以直接使用目标值排序,而多目标存在多组目标值,,EMEA中提出随机选择一个目标值来进行排序,具体可见EMEA–多任务优化的另一种范式:显式多任务优化-CSDN博客

  • 28
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tiger-woods

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值