EMEA–多任务优化的另一种范式:显式多任务优化
title:Evolutionary Multitasking via Explicit Autoencoding
author:Liang Feng , Lei Zhou, Jinghui Zhong, Abhishek Gupta , Yew-Soon Ong , Kay-Chen Tan , and A. K. Qin.
journal:IEEE TRANSACTIONS ON CYBERNETICS(TCYB)
DOI: https://doi.org/10.1109/TCYB.2018.2845361.
code:https://github.com/intLyc/MTO-Platform/tree/master/MTO/Algorithms/Multi-task/Multi-population/EMEA
1.主要贡献:
1)提出了一种显式自编码器的方式来实现跨任务的知识迁移(EMEA)
2.问题提出:
不同的优化问题具有不同的特性,使用不同的进化机制才能有效解决这些问题。而传统的MFEA及其变体采用一种通用的进化机制(即交叉和突变)来解决多个任务。为了提高MTO的性能,本文提出了将多种搜索机制结合的EMEA。
3.EMEA:
1)对每个任务都使用独立的解表示方案,而不是使用统一搜索空间。
2)对于不同的任务使用不同的进化求解器。
3)引入自编码器显式地进行跨任务间知识迁移。且因为去噪自编码器由闭式解,所以不会造成太多额外的计算负担。
假设
P
=
{
p
1
.
.
.
,
p
N
}
P=\{p_1...,p_N\}
P={p1...,pN}和
Q
=
{
q
1
.
.
.
,
q
N
}
Q=\{q_1...,q_N\}
Q={q1...,qN}分别表示从两个不同的优化问题
O
P
1
OP_1
OP1和
O
P
2
OP_2
OP2的搜索空间中均匀独立采样的解集,其中
N
N
N表示每个解集的个体数。将
P
P
P作为输入,
Q
Q
Q作为输出来构建自编码器,则从问题
O
P
1
OP_1
OP1到
O
P
2
OP_2
OP2的映射
M
M
M可以表示如下:
M
=
(
Q
P
T
)
(
P
P
T
)
−
1
.
M = (QP^T) (PP^T)^{−1}.
M=(QPT)(PPT)−1.
因此,跨任务知识迁移可以简单的通过与
M
M
M的乘法运算来实现。
任务映射的学习过程如算法1所示。首先,对两个问题采样;其次,按照目标值排序;然后,将两个任务排序后的解集分别作为自编码器的输入和输出;最后,通过上述公式得到映射 M M M.
注意:单目标优化问题可以直接使用目标值进行排序并执行算法1,而多目标优化问题需要先对每个目标函数进行排序,然后将排序后的P和Q分别作为自编码器的输入和输出,得到如下图所示的 M 12 11 , M 12 12 , M 12 21 M^{11}_{12},M^{12}_{12},M^{21}_{12} M1211,M1212,M1221和 M 12 22 M^{22}_{12} M1222。
4)显式知识迁移:
跨任务知识迁移是通过固定间隔(每隔10代)实现的
对于单目标多任务问题,当知识迁移发生时,先根据目标值选择 S S S个个体,然后通过学习映射 M M M来实现知识迁移。
对于多目标多任务问题,由于存在多组映射关系( M 12 11 , M 12 12 , M 12 21 , M 12 22 M^{11}_{12},M^{12}_{12},M^{21}_{12},M^{22}_{12} M1211,M1212,M1221,M1222),所以多目标多任务问题的知识迁移如算法2所示。首先,分别从两个问题 O P 1 , O P 2 OP_1,OP_2 OP1,OP2随机选择一个目标函数 a , b a,b a,b。然后,分别根据目标函数 a , b a,b a,b选择最合适的 S S S个个体。最后,通过映射 M 12 a b M^{ab}_{12} M12ab将从问题 O P 1 OP_1 OP1中选择的个体迁移至问题 O P 2 OP_2 OP2,通过映射 M 21 b a M^{ba}_{21} M21ba将从问题 O P 2 OP_2 OP2中选择的个体迁移至问题 O P 1 OP_1 OP1.
5)EMEA的算法框架:
首先,对于不同的问题,都构建了一个独立的种群和求解器。其次,根据算法1使用自编码器离线地学习不同的任务间映射关系 M M M。然后,显式知识迁移是通过将从任务 O P 1 OP_1 OP1中选择的S个个体与映射 M M M进行乘法运算后得到的新个体注入到任务 O P 2 OP_2 OP2中来实现的。
4.显式迁移与隐式迁移的区别:
1)显式迁移:对每个任务都构建了一个种群和进化求解器,隐式迁移:统一搜索空间和统一进化求解器。
2)显式迁移:知识迁移是通过注入解或者转换后的解实现的,隐式迁移:知识迁移是通过知识交叉算子实现的。
5.思考
1)两个任务维度不一致问题。
2)EMEA使用离线训练好的自编码器来实现知识迁移的,不能动态的捕获种群迭代过程的动态变化。
3)EMEA在处理多目标多任务优化问题时的迁移策略,采用随机选择目标函数的方式存在随机性,可以探讨新的针对多目标多任务优化问题的知识迁移策略。