MO-MFEA–多目标多任务优化
title: Multiobjective Multifactorial Optimization in Evolutionary Multitasking
author: Abhishek Gupta, Yew-Soon Ong, Liang Feng, and Kay Chen Tan.
journal: IEEE TRANSACTIONS ON CYBERNETICS (TCYB)
code:https://github.com/intLyc/MTO-Platform/tree/master/MTO/Algorithms/Multi-objective Multi-task/Multi-factorial/MO-MFEA
1.主要贡献:
1)提出了MO-MFO范式,旨在同时解决多个多目标优化问题;
2)提出了MO-MFEA来解决MO-MFO问题。
2.问题提出:
1)单目标的MFEA在许多实际应用问题上取得了很大的成功,多目标优化问题在实际应用中越来越受到关注。但现有的多目标优化大多数是一次解决一个问题,很少能同时解决多个多目标优化问题。
2)由于多目标优化问题的最终结果是一组互相不可比较的解(帕累托前沿),在MO-MFO中,我们希望可以将一个任务中好的知识迁移至另一个任务中,所以在MO-MFO中,一个重要的问题是一个多目标优化问题(MOOP)中的候选解该如何排序,也就是说MO-MFEA中的标量适应度和因子等级该如何确定。
3.MO-MFEA:
3.1 MOOP中种群成员的排序
设存在一对个体 p 1 p_1 p1和 p 2 p_2 p2,分别有非支配前沿 N F 1 NF_1 NF

最低0.47元/天 解锁文章
570

被折叠的 条评论
为什么被折叠?



