MO-MFEA--多目标多任务优化

MO-MFEA–多目标多任务优化

title: Multiobjective Multifactorial Optimization in Evolutionary Multitasking

author: Abhishek Gupta, Yew-Soon Ong, Liang Feng, and Kay Chen Tan.

journal: IEEE TRANSACTIONS ON CYBERNETICS (TCYB)

DOI10.1109/TCYB.2016.2554622

code:https://github.com/intLyc/MTO-Platform/tree/master/MTO/Algorithms/Multi-objective Multi-task/Multi-factorial/MO-MFEA

1.主要贡献:

1)提出了MO-MFO范式,旨在同时解决多个多目标优化问题;

2)提出了MO-MFEA来解决MO-MFO问题。

2.问题提出:

1)单目标的MFEA在许多实际应用问题上取得了很大的成功,多目标优化问题在实际应用中越来越受到关注。但现有的多目标优化大多数是一次解决一个问题,很少能同时解决多个多目标优化问题。

2)由于多目标优化问题的最终结果是一组互相不可比较的解(帕累托前沿),在MO-MFO中,我们希望可以将一个任务中好的知识迁移至另一个任务中,所以在MO-MFO中,一个重要的问题是一个多目标优化问题(MOOP)中的候选解该如何排序,也就是说MO-MFEA中的标量适应度和因子等级该如何确定。

3.MO-MFEA:

3.1 MOOP中种群成员的排序

设存在一对个体 p 1 p_1 p1 p 2 p_2 p2,分别有非支配前沿 N F 1 NF_1 NF

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tiger-woods

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值