SaEF-AKT--自适应知识迁移的代理辅助多任务进化框架

本文介绍了一种名为SaEF-AKT的框架,它结合了代理辅助、高斯过程经验模型和自适应知识迁移,用于解决昂贵优化问题。框架通过计算任务间相似度和利用信息素策略选择相似任务,有效迁移知识。
摘要由CSDN通过智能技术生成

SaEF-AKT–自适应知识迁移的代理辅助多任务进化框架

title:Surrogate-Assisted Evolutionary Framework with Adaptive Knowledge Transfer for Multi-task Optimization

author:Shijia Huang, Jinghui Zhong,and Wei-jie Yu

journal: IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING(TETC)

DOI10.1109/TETC.2019.2945775

code:

1.主要贡献:

1)提出了一种代理辅助的多任务进化框架,可以用于解决昂贵优化问题。

2)设计了一种相似性度量方式

3)提出了一种自适应知识迁移策略来迁移有效的知识。

4)提出了一种基于信息素的方式来选择相似任务。

2.问题提出:

​ 在解决相似性事先未知的MaTO问题时,如何选择相似任务,如何进行知识迁移。

3.SaEF-AKT:

3.1 算法框架

​ 首先,为每个任务构建高斯过程经验模型(GPOP)。然后,使用KLD来计算任务间相似度。接着,根据信息素浓度和相似度来选择相似任务。最后,从相似任务中迁移有效的知识,并更新信息素。

image-20240319194836452 image-20240319194935704

3.2 构建经验模型

​ 高斯过程经验模型的预测精度取决于协方差矩阵及其相关参数。

​ 首先,GP是通过随机抽样一组初始点来构建的。然后,在接下来的每一代,都会在给定数据集上构建GP,并优化参数。接着,使用进化算法来搜索由GP构建的“近似问题”的最小值。最后,在EA结束后,使用真实的适应度函数来评估找到的最小值,并将其添加至数据集中。

​ 为了提高GP的预测质量,促进全局搜索,merit函数定义如下:
f M ( x ) = t ^ ( x ) − γ σ t ( x ) f_M(x)=\hat t(x)-\gamma\sigma_t(x) fM(x)=t^(x)γσt(x)
其中, t ^ ( x ) \hat t(x) t^(x)表示通过GP经验模型得到的预测函数值, γ \gamma γ是一个平衡探索和开发的因子, σ t ( x ) \sigma_t(x) σt(x)是GP预测的标准差。随着γ的增加,优化求解器将更有可能向未探索的区域移动。

​ 为了减少计算复杂度,提高精确度,本文所使用的GPOP的训练数据是由最近评估的 N R N_R NR个点和最接近 x b e s t x_{best} xbest N C N_C NC个点组成。

​ 为了提高搜索效率,所搜区域被限制在 x b e s t x_{best} xbest周围:
x b e s t − d / 2 ≤ x ≤ x b e s t + d / 2 x_{best}-d/2\le x\le x_{best}+d/2 xbestd/2xxbest+d/2
其中 d d d超立方体的对角线集,用以反映 N C N_C NC个最近点的分布:
d i = m a x c ( x c , i ) − m i n c ( x c , i ) d_i=max_c(x_{c,i})-min_c(x_{c,i}) di=maxc(xc,i)minc(xc,i)
其中, i i i是维度, c c c N C N_C NC个最近点的点集。

3.3 相似度度量

1)使用多元正态分布来描述训练数据的分布:
N ( μ , σ 2 C ) μ = ∑ i = 1 λ ω i x i ∑ i = 1 λ ω i = 1 C = 1 λ − 1 ∑ i = 1 λ ( x i − 1 λ ∑ j = 1 λ x j ) ( x i − 1 λ ∑ j = 1 λ x j ) T N(\mu,\sigma^2C)\\ \mu=\sum^\lambda_{i=1}\omega_i x_i\\ \sum^\lambda_{i=1}\omega_i=1\\ C=\frac{1}{\lambda-1}\sum^\lambda_{i=1}\bigg(x_i-\frac 1\lambda\sum^\lambda_{j=1}x_j\bigg)\bigg(x_i-\frac 1\lambda\sum^\lambda_{j=1}x_j\bigg)^T N(μ,σ2C)μ=i=1λωixii=1λωi=1C=λ11i=1λ(xiλ1j=1λxj)(xiλ1j=1λxj)T
其中, x i x_i xi是训练数据, ω i \omega_i ωi是每个数据的权重, λ \lambda λ是数据的数目。

2)使用KLD来计算任务相似度:
K L D ( N 0 ∣ ∣ N 1 ) = 1 2 t r ( ( C 1 − 1 C 0 ) + ( μ 1 − μ 0 ) T C 1 − 1 ( μ 1 − μ 0 ) − k + l n ( / f r a c d e t C 1 d e t C 0 ) ) KLD(N_0||N_1)=\frac12tr((C^{-1}_1C_0)+(\mu_1-\mu_0)^TC^{-1}_1(\mu_1-\mu_0)-k+ln(/frac{detC_1}{detC_0})) KLD(N0∣∣N1)=21tr((C11C0)+(μ1μ0)TC11(μ1μ0)k+ln(/fracdetC1detC0))
其中, N 0 , N 1 N_0,N_1 N0,N1是两个分布, μ 0 , μ 1 \mu_0,\mu_1 μ0,μ1是两个分布的均值, C 0 , C 1 C_0,C_1 C0,C1是两个分布的协方差矩阵, k k k是协方差矩阵的维度。注意,KLD是不对称的。

3.4 自适应知识迁移策略

1)通过相似度和信息素计算任务选择概率:
P k t ( r , s ) = τ ( r , s ) η ( r , s ) ∑ u ∈ U τ ( r , u ) η ( r , u ) P_{kt}(r,s)=\frac{\tau(r,s)\eta(r,s)}{\sum_{u\in U}\tau(r,u)\eta(r,u)} Pkt(r,s)=uUτ(r,u)η(r,u)τ(r,s)η(r,s)
其中, U U U是任务集, τ ( r , s ) \tau(r,s) τ(r,s)是任务 s s s辅助任务 r r r的信息素浓度,范围为0至1, η ( r , s ) \eta(r,s) η(r,s)是任务 s s s与任务 r r r的相似度,
η ( r , s ) = 1 K L D ( r ∣ ∣ s ) \eta(r,s)=\frac{1}{KLD(r||s)} η(r,s)=KLD(r∣∣s)1
归一化相似度:
η ( r , s ) = e x p ( η ( r , s ) ) ∑ u ∈ U e x p ( η ( r , u ) ) \eta(r,s)=\frac{exp(\eta(r,s))}{\sum_{u\in U}exp(\eta(r,u))} η(r,s)=uUexp(η(r,u))exp(η(r,s))
2)通过任务选择概率选择辅助任务:
A T ( r ) = { t a s k   w i t h   m a x i m u n   P k l ( r , ⋅ ) , i f   R a n d ( 0 , 1 ) < P m a x , R o u l e t t e   b a s e d   o n   P k l ( r , ⋅ ) , o t h e r w i s e . AT(r)=\begin{cases} task\ with\ maximun\ P_{kl}(r,\cdot),if\ Rand(0,1)<P_{max},\\ Roulette\ based\ on\ P_{kl}(r,\cdot),otherwise. \end{cases} AT(r)={task with maximun Pkl(r,),if Rand(0,1)<Pmax,Roulette based on Pkl(r,),otherwise.
其中 P m a x P_{max} Pmax是预先设定的概率,用来选择具有最大 P k l P_{kl} Pkl的任务作为辅助任务。

3)将辅助任务 A T ( r ) AT(r) AT(r)的最优解传递给任务 r r r,并通过传递的解的质量来更新信息素。
τ ( r , s ) = ( 1 − P h e α ) ∗ τ ( r , s ) \tau(r,s)=(1-Phe_{\alpha})*\tau(r,s) τ(r,s)=(1Pheα)τ(r,s)
当迁移解由于目标任务的最优解,则任务辅助任务对目标任务有帮助,信息素浓度更新如下:
τ ( r , s ) = P h e m a x \tau(r,s)=Phe_{max} τ(r,s)=Phemax
在算法初始化阶段,信息素的值都设定为:
τ ( x , y ) = P h e m a x + P h e m a x 2 \tau(x,y)=\frac{Phe_{max}+Phe_{max}}2 τ(x,y)=2Phemax+Phemax
其中, P h e m a x , P h e m a x Phe_{max},Phe_{max} Phemax,Phemax是信息素的上下界。

4.思考

1)与大部分算法不同的是,SaEF-AKT在选择相似任务时,采用了任务分布相似度和基于反馈的信息素两种策略。使用GPOP代理辅助模型来得到更好的解。所以SaEF-AKT适用于解决昂贵优化问题。

2)虽然SaEF-AKT提出了一种有效的源任务选择策略,但对源任务中的知识选择却没有进行研究。MTEA-AD–通过异常检测模型来解决Many多任务优化问题-CSDN博客

3)如何设计合理有效的知识迁移策略也是MTO的研究热点,例如混合迁移策略EMTO-HKT–带有混合知识迁移策略的多任务优化算法-CSDN博客,基于映射的知识迁移策略EMEA–多任务优化的另一种范式:显式多任务优化-CSDN博客,基于基因相似度的知识迁移策略MFEA-GSMT–通过基因相似性和镜像转换来解决多任务优化问题-CSDN博客

  • 45
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tiger-woods

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值