with open("node_features.txt", "w") as feature_file:
all_node_feats = []
for subgraph in zip(subgraphs[0], subgraphs[1], subgraphs[2], subgraphs[3]):
source_pos_inputs = model.get_input_has_temporal_neighbors(args, subgraph[0], edge_feats)
target_pos_inputs = model.get_input_has_temporal_neighbors(args, subgraph[1], edge_feats)
source_neg_inputs = model.get_input_has_temporal_neighbors(args, subgraph[2], edge_feats)
target_neg_inputs = model.get_input_has_temporal_neighbors(args, subgraph[3], edge_feats)
inputs = [source_pos_inputs[0], target_pos_inputs[0], source_neg_inputs[0], target_neg_inputs[0]]
has_temporal_neighbors = [source_pos_inputs[1], target_pos_inputs[1],
source_neg_inputs[1], target_neg_inputs[1]]
src_pos_x, dst_pos_x, src_neg_x, dst_neg_x = model.get_root_node_emb(inputs, has_temporal_neighbors, has_temporal_neighbors, node_feats)
src_pos_x,
今天本想把这个特征存成一个pt文件。但是包内存不够用了,后来发现居然是我这边的每个变量的require_grad都设置成了True。这样应该会导致这些变量都在计算图上面。这个计算图变大后内存肯定就爆满了。以后在处理数据这一块要记住,就是遇到内存不够了先去看看这个数据是不是Tensor类型的,若是Tensor类型的很有可能require_grad都设置成了True。处理数据应该用numpy这种的。