隔板法

隔板法:


【定义】
隔板法就是在n个元素间的(n-1)个空中插入k个板,可以把n个元素分成k+1组的方法。  

应用隔板法必须满足的条件:    
(1) 所分成的每一组至少分得1个元素; 

 

【公式】
把10个相同的小球放入3个不同的箱子,每个箱子至少一个,问有几种情况?

C(n-1,m-1)=C(9.2)

接下来才是重点(某个箱子可以为空)

 

【隔板应用】


普通隔板法 


例1. 求方程 x+y+z=10的正整数解的个数。

分析:将10个球排成一排,球与球之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的球数分别为x、y、z之值(如下图)。则隔法与解的个数之间建立了一一对立关系,故解的个数为C(n-1,m-1)=C(9,2)=36(个)。                                                                                                    

添元素隔板法

例2:将20个大小形状完全相同的小球放入3个不同的盒子,允许有盒子为空,但球必须放完,有多少种不同的方法?

分析:本题中的小球大小形状完全相同,故这些小球没有区别,问题等价于将小球分成三组,允许有若干组无元素,用隔板法.

解析:将20个小球分成三组需要两块隔板,因为允许有盒子为空,不符合隔板法的原理,那就人为的再加上3个小球,保证每个盒子都至少分到一个小球,那就符合隔板法的要求了(分完后,再在每组中各去掉一个小球,即满足了题设的要求)。然后就变成待分小球总数为23个,球中间有22个空档,需要在这22个空档里加入2个隔板来分隔为3份,共有C(22,2)=231种不同的方法.

 

例3: 把10个相同小球放入3个不同箱子,第一个箱子至少1个,第二个箱子至少3个,第三个箱子可以放空球,有几种情况? 
我们可以在第二个箱子先放入10个小球中的2个,小球剩8个放3个箱子,然后在第三个箱子放入8个小球之外的1个小球,则问题转化为 把9个相同小球放3不同箱子,每箱至少1个,几种方法? C(8,2)=28 

 

例4. 将20个相同的小球放入编号分别为1,2,3,4的四个盒子中,要求每个盒子中的球数不少于它的编号数,求放法总数。(减少球数用隔板法)

分析:先在编号1,2,3,4的四个盒子内分别放0,1,2,3个球,剩下14个球,有1种方法;再把剩下的球分成4组,每组至少1个,由例1知方法有C(13,3)=286(种)。

 

例5:有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能再写为止,如257,1459等等,这类数共有几个? 
因为前2位数字唯一对应了符合要求的一个数,只要求出前2位有几种情况即可,设前两位为ab 
显然a+b<=9 ,且a不为0 
1 -1- 1 -1 -1 -1 -1 -1 -1      1代表9个1,-代表8个空位 
我们要把9个1分成两组,但b可以为0,我们先给b一个1,然后就相当于10个小球放入两个(a,b)不同的箱子,每一个箱子至少放一个,C(9,1),但这是错误的,为什么?因为1不一定要全部放入。其实解决这个问题可以这么想,我们在引进一个盒子c来放ab取完剩下的1,所以报证c中球数大于0,所以要在增加一个球,题目就等价于,11个小球放入三个(a,b)不同的箱子,每一个箱子至少放一个,所以一共有 c(10,2)=45 .

添板插板法


例5另一种解法:
显然a+b<=9 ,且a不为0 
1 -1- 1 -1 -1 -1 -1 -1 -1 - -    1代表9个1,-代表10个空位 (第一个没有因为a不能为0),我们可以在这9个空位中插入2个板,分成3组,第一组取到a个1,第二组取到b个1,但此时第二组始终不能取空,若多添加第10个空时,设取到该板时第二组取空,即b=0,所以一共有 c(10,2)=45 

添板插板法就是添元素隔板法的变形。

选板法 

例6: 有10粒糖,如果每天至少吃一粒(多不限),吃完为止,求有多少种不同吃法? 
o - o - o - o - o - o - o - o - o – o       o代表10个糖,-代表9块板 
10块糖,9个空,插入9块板,每个板都可以选择放或是不放,相邻两个板间的糖一天吃掉 
这样一共就是 2^9= 512啦 


分类插板 

例7: 小梅有15块糖,如果每天至少吃3块,吃完为止,那么共有多少种不同的吃法? 
此问题不能用插板法的原因在于没有规定一定要吃几天,因此我们需要对吃的天数进行分类讨论 
最多吃5天,最少吃1天 
1: 吃1天或是5天,各一种吃法 一共2种情况 
2:吃2天,每天预先吃2块,即问11块糖,每天至少吃1块,吃2天,几种情况? C(10, 1)=10 
3:吃3天,每天预先吃2块,即问9块糖,每天至少1块,吃3天? C(8 ,2)=28 
4:吃4天,每天预先吃2块,即问7块糖,每天至少1块,吃4天?c(6 ,3)=20 
所以一共是 2+10+28+20=60 种 

逐步插板法 

例8 :在一张节目单中原有6个节目,若保持这些节目相对次序不变,再添加3个节目,共有几种情况? 
-o - o - o - o - o - o - 三个节目abc 
可以用一个节目去插7个空位,再用第二个节目去插8个空位,用最后个节目去插9个空位 
所以一共是 c(7, 1)×c(8, 1)×c(9 ,1)=504种

 

几个思维含量的例题:

1.[ZOJ3557]How Many Sets II

给一个集合,一共个元素,从中选取个元素,选出的元素中没有相邻的元素的选法一共有多少种?

这道题是插板法的经典应用 
首先我们拿出m个小球,还剩下n-m个小球。这n-m个小球一共有n-m+1个空(左右两边也可以),把这m个小球插入到这n-m+1个空里就是答案,即 
这m个小球的编号取决于它插入的位置,所以和选哪个小球没关系

2.hdu 3037 Saving Beans

有n个不同的盒子,在每个盒子中放一些球(可以不放),使得总球数≤m,求方案数(mod p)

第一种方法:

设最后放了k个球,根据"隔板法"由方案数C(k+n-1,n-1),:
ans=C(n-1,n-1)+C(n,n-1)+C(n+1,n-1)+……+C(n+m-2,n-1)+C(n+m-1,n-1)
     =C(n+m,n);(mod p)

第二种方法:

这个题和原来不一样的地方:总球数≤m,一般我们就是总球数就是m,所以我们可以增加一个盒子,现在n+1个盒子,现在假设就要放m个球,n来来放k个球,剩下的m-k就放在那个我们增加的盒子里,这样n个盒子的组合球数就是我们要求的,所以题目等价于m个球放入n+1个盒子中,盒子有里球数可以为0,添元素插板法,每一个盒子都增加一个球,即m+n+1个球放入n+1个盒子,c(m+n,n)为答案
 

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
这是一个经典的组合数学问题,可以使用“隔板”来解决。 我们将M个苹果放在一排,然后在它们之间插入N-1个隔板,表示将苹果分成N组。例如,当M=7,N=3时,排列如下: o o o | o o | o o 其中,每一组的苹果数量就是相邻隔板之间的苹果数量。例如,第一组有3个苹果,第二组有2个苹果,第三组有2个苹果。 因此,问题就转化为了在M+N-1个位置中选择N-1个位置插入隔板的方案数,即: K = C(M+N-1, N-1) = C(7+3-1, 3-1) = C(9, 2) = 36/2 = 18 但是,由于题目中要求“同一种分”只算一种,因此我们需要去除重复的方案数。在这个例子中,1,5,1和5,1,1是同一种分,因此需要去除重复的方案数。 为了避免重复,我们可以规定每个盘子里面的苹果数量不小于前面的盘子里面的苹果数量。例如,1,5,1是合的,但是5,1,1是不合的,因为它与1,5,1是重复的。 根据这个规定,我们可以得到每个盘子里面的苹果数量,然后再按照隔板的方计算方案数。例如,1,5,1对应的隔板排列为: o | o o o o | o 其中,第一个盘子里面放了1个苹果,第二个盘子里面放了5个苹果,第三个盘子里面放了1个苹果。因此,方案数为: K' = C(2+3-1, 3-1) = C(4, 2) = 6 同样地,对于其他的分,也可以按照这个方计算方案数,并去除重复的方案数。最终,经过计算,可以得到: K = 18 - 2 = 16 因此,将5个苹果放在3个盘子里的不同分有16种。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值