点云PCL从理解到应用
文章平均质量分 96
理解点云,从PCL库入手,循序渐进;从理解到应用。
一颗小树x
计算机专业,某车企的算法工程师;曾获华为云-云享专家,华为云-云创 首席贡献官,阿里云-专家博主等荣誉。PS:需要开通ChatGPT4.0、ChatGPT Plus的,欢迎私信我哈~
展开
-
PCL从理解到应用【02】PCL环境安装 | PCL测试| Linux系统
本文介绍在Ubuntu18.04系统中,如何安装PCL。源码安装方式:pcl版本1.91,vtk版本8.2.0,Ubuntu版本18.04。安装好后,可以看到pcl的库,在/usr/lib/中。原创 2024-07-04 20:41:25 · 1570 阅读 · 0 评论 -
PCL从理解到应用【03】KDTree 原理分析 | 案例分析 | 代码实现
本文分析KDTree的原理,集合案例深入理解,同时提供源代码。三个案例:K近邻搜索、半径内近邻搜索、近似最近邻搜索。原创 2024-07-05 22:00:03 · 1203 阅读 · 0 评论 -
PCL从理解到应用【04】Octree 原理分析 | 案例分析 | 代码实现
Octree 作为一种高效的空间分割数据结构,具有重要的应用价值。本文将深入分析 Octree 的原理,通过多个实际案例帮助读者全面理解其功能和应用,包括最近邻搜索、半径搜索、盒子搜索以及点云压缩(体素化)。特性近邻搜索半径搜索盒子搜索点云压缩(体素化)描述查找距离给定点最近的一个或多个点查找给定点一定半径范围内的所有点查找给定空间盒子内的所有点将点云数据划分为均匀大小的立方体(体素)输入参数目标点,近邻数量目标点,半径盒子的最小点和最大点分辨率输出最近的一个或多个点的索引及距离。原创 2024-07-12 21:01:20 · 1220 阅读 · 0 评论 -
PCL从理解到应用【05】快速安装PCL环境 | PCL测试| Linux系统
本文介绍在Ubuntu系统中,通过apt-get方式安装,快速安装PCL。安装好后,通过编写C++代码,直接调用的pcl库。原创 2024-07-14 12:24:21 · 1228 阅读 · 0 评论 -
PCL从理解到应用【06】 RANSAC原理分析 | 案例分析 | 代码实现
本文分析RANSAC算法的原理,集合案例深入理解,同时提供源代码。RANSAC,随机采样一致性,是一种迭代的算法,用于从一组包含异常值的数据中估计模型参数。示例案例:平面拟合、线段拟合、球体拟合等。原创 2024-07-16 22:31:07 · 776 阅读 · 0 评论 -
PCL从理解到应用【07】点云滤波 原理分析 | 案例分析 | 代码实现
本文分析点云滤波算法的原理,集合案例深入理解,同时提供源代码。包括:体素栅格滤波、统计滤波、条件移除滤波、半径滤波、下采样滤波等。原创 2024-07-28 00:51:56 · 1105 阅读 · 0 评论 -
PCL从理解到应用【08】 点云特征 | 法线估计 | 主曲率估计
在PCL中,有多种方法和函数可以用来提取点云特征,本文介绍几何特征。其中,几何特征主要包括法线估计和主曲率估计。这些特征能够描述点云表面的几何形状,常用于进一步的点云处理和分析,如配准、分割和物体识别。平面的法向量估计,示例效果:1. 法向量 (Normal Vector)法向量是一个垂直于曲面或平面的向量,描述了曲面在某一点的局部方向。对于一个三维曲面,法向量是法平面的法线。对于每个点,定义一个局部邻域。在这个邻域中,使用算法拟合一个平面。法向量是拟合平面的法线方向。原创 2024-08-02 21:21:19 · 1365 阅读 · 0 评论 -
PCL从理解到应用【09】 点云特征 | 关键点提取 | 方法汇总
在PCL中,有多种方法和函数可以用来提取点云特征,本文介绍关键点提取。提取点云关键点,本文介绍的方法包括:SIFT、Harris、NARF、ISS和SUSAN。Harris 提取点云关键点,效果如下图所示:白色点是原始的点云(兔子),绿色点是Harris提取的点云关键点。对比一下5种点云关键点算法,如下表格所示:方法简介特点时间复杂度优点缺点SIFT基于尺度不变特征变换,检测不同尺度和旋转不变的关键点尺度不变性、旋转不变性高在尺度和旋转变化下稳定,对噪声有较强的鲁棒性。原创 2024-08-03 15:28:24 · 1852 阅读 · 0 评论