- 支持度
体现数据的重要性
支持度是个百分比,它指的是某个商品组合出现的次数与总次数之间的比例。支持度越高,代表这个组合出现的频率越大。 - 置信度
体现数据的可靠性
它指的就是当你购买了商品A,会有多大的概率购买商品B,
所以说置信度是个条件概念,就是说在A发生的情况下,B发生的概率是多少。 - 提升度(是关联规则的价值衡量)
客观上,使用"支持度和置信度"框架可能会产生一些不正确的规则。只凭支持度和置信度阑值未必总能找出符合实际的规则,所以引出提升度
Lift ( A → B ) = Confidence ( A → B ) / Support(B) = P ( A B ) p ( A ) p ( B ) \operatorname{Lift}(A \rightarrow B)=\text { Confidence }(A \rightarrow B) / \text { Support(B) }=\frac{P(A B)}{p(A) p(B)} Lift(A→B)= Confidence (A→B)/ Support(B) =p(A)p(B)P(AB)
商品推荐重点考虑的是提升度,因为提升度代表的是“商品A的出现,对商品B的出现概率提升的”程度。
引入提升度Li筒,以度量此规则是否可用。它描述的是=相对
于不用规则,使用规则可以提高多少- 所以提升度有三种可能:
- 提升度(A→B)>1:代表有提升;
- 提升度(A→B)=1:代表有没有提升,也没有下降;
- 提升度(A→B)<1:代表有下降
- 所以提升度有三种可能:
关联规则的支持度,置信度,提升度
最新推荐文章于 2024-10-21 22:26:52 发布