《数据结构打卡》第5天
一、树和二叉树
- 在n个结点的二叉链表中,共有_2n_个指针域,有_n+1_个空指针域,有_n-1_个非空指针域;总链域-空链域=非空链域=2n-(n+1)=n-1
- 在有n个叶子结点的二叉树中,结点总数为_2n-1__。
- 满二叉树一定是完全二叉树,满二叉树不一定是哈夫曼树。
- 深度为k的完全二叉树的第k层上至少有_1个结点,第k层上最多有2k-1_个结点。
- 深度为k的完全二叉树至少有_2k-1_个结点。例如深度为3的完全二叉树,那么23-1个结点的完全二叉树有_4__个结点;
- 深度为k的完全二叉树最多有__2k-1__个结点。例如深度为3的完全二叉树,那么23-1个结点的完全二叉树有_7__个;
二、完全二叉树
特点:
- 所有叶子结点都在最后两层。度为1的结点只有一个。
- 具有n(n>0)个结点的完全二叉树的深度为_log2n+1__。
拓展:
在一棵度为3的树中,度为3的结点数为2个,度为2的结点数为1个,度为1的结点数为2个,则度为0的结点数为( )个。
叶子结点数:2*2+1+1
假设根结点度为0时,叶结点数为 1;若树中每出现1个度为1的结点,则叶子数增加0个,每出现1个度为2的结点,叶子数增加1个,每出现1个度为3的结点,则叶子数增加2个……依此类推,每个度为m的结点,可增加m-1个叶子数。
三、哈夫曼树
(1).哈夫曼树概念:
- 结点带权路径的长度:从根节点到该结点之间的路径长度与该结点权值的乘积
- 树的带权路径长度(WPL):树中所有叶子结点的带权路径长度之和
(2).哈夫曼树的特点
- 结点数目相同的二叉树中,完全二叉树是路径长度最短的二叉树。
- 哈夫曼树:也就最优树,是带权路径长度最小(短)的树。
- 哈夫曼树中结点权值越大的离根节点越近,结点权值越小的离根节点越远。
- 具有相同带权结点的哈夫曼树不唯一。
在有n个叶子结点的哈夫曼树中,其结点总数为_2n-1__个结点。
哈夫曼树又称为最优二叉树,它的结点总数和二叉树相同为2n-1。
(3).哈夫曼树的构成:
例1:有5个结点a,b,c,d,e,值分别是7,5,5,2,4,请构造哈夫曼二叉树。(5分)
例2:设{4,5,6,7,10,12,18}为权值,构造哈夫曼树(5分)
例3:设权值集合 W={15 , 3 , 14 , 2 , 6 , 9 , 16 , 17},要求根据这些权值集合构造一棵哈夫曼树,并计算出哈夫曼树的带权路径长度(10分)
总权值为:WPL