TensorFlow深度学习框架笔记(一)基础入门

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_41251963/article/details/83721300

第一个TensorFlow程序!

import tensorflow as tf 

a=tf.constant([1.0,2.0],name='a')

b=tf.constant([2.0,3.0],name='b')

result=a+b

sess=tf.Session()
#sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
#确定自己的TensorFlow是CPU还是GPU的版本

print(sess.run(result))

TensorFlow中的Fetch和Feed!

import tensorflow as tf 
#Fetch

input1=tf.constant(3.0)

input2=tf.constant(2.0)

input3=tf.constant(5.0)

add=tf.add(input2,input3)

mul=tf.multiply(input1,add)

with tf.Session() as sess:

    result=sess.run([mul,add])

    #[21.0,7.0]


#Feed

#创建占位符

input1=tf.placeholder(tf.float32)

input2=tf.placeholder(tf.float32)

output=tf.multiply(input1,input2)

with tf.Session() as sess:

    #feed的数据以字典的形式传入

    print(sess.run(output,feed_dict={input1:7.0,input2:2.0}))

    #[14.]

   

TensorFlow小实例!

import tensorflow as tf
import numpy as np 

#使用numpy生成100个随机点

x_data=np.random.rand(100)

y_data=x_data*0.1+0.2


#构建一个线性模型、

b=tf.Variable(0.)
k=tf.Variable(0.)
y=k*x_data+b

#二次代价函数

loss=tf.reduce_mean(tf.square(y_data-y))
#定义一个梯度下降法来进行训练的优化器
optimizer=tf.train.GradientDescentOptimizer(0.2)
#最小化代价函数
train=optimizer.minimize(loss)

#初始化变量
init=tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    for step in range(201):
        sess.run(train)
        if step%20==0:
            print(step,sess.run([k,b]))
展开阅读全文

没有更多推荐了,返回首页