莫比乌斯函数---C++

该博客介绍了莫比乌斯函数在数论中的应用及其定义,包括如何判断一个数的莫比乌斯函数值。通过示例展示了如何计算莫比乌斯函数值,并提供了一个简单的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【问题描述】
莫比乌斯函数,数论函数,由德国数学家和天文学家莫比乌斯(Mobius,1790-1868)提出。梅滕斯(Mertens)首先使用μ(n)作为莫比乌斯函数的记号。而据说,高斯(Gauss)比莫比乌斯早三十年就曾考虑过这个函数。莫比乌斯函数在数论中有着广泛的应用。
莫比乌斯函数完整定义的通俗表达:
1)莫比乌斯函数μ(n)的定义域是N
2)μ(1)=1
3)当n存在平方因子时,μ(n)=0
4)当n是素数或奇数个不同素数之积时,μ(n)=-1
5)当n是偶数个不同素数之积时,μ(n)=1
在这里插入图片描述
例如:
μ(8),μ(12),μ(18)都为08的因数为1,2,4,8;其中4=2*2故μ(8)=0
μ(2),μ(3),μ(30)都为-1
μ(1),μ(6),μ(10)都为1
给出一个数n,计算μ(n)。
【输入形式】
输入一行一个整数n
【输出形式】
输出μ(n)
【样例输入】
12
【样例输出】
0

#include <iostream>
#include <stdio.h>
#include <math.h>
using namespace std;
int mobius(int n);
int main()
{
    int n;
    scanf("%d",&n);
    mobius(n);
    return 0;
}
int mobius(int n)
{
    if(n==1)//1就是1
    {
        return 1;
    }
    else
    {
        int res=-1;//开始为奇数
        for(int i=2; i<=sqrt(n); i++)//简便数的运算,判断素数常用,取一半数就行
        {
            //能进去if里面的肯定不是素数,若该数就是一个素数直接输出-1就行了
            if(n%i==0 && n/i%i==0)//非素数,并且还有平方因子,既然/i%i为0,也就是i*i就是那个完全平方数
            {
                return 0;
            }
            else if(n%i==0)//非素数
            {
                res*=-1;//res负责判断素数为奇数还是偶数,来一次变一次,偶数为1,奇数为-1
                n/=i;
            }
        }
        printf("%d",res);//当res一次都没进入if里面,说明该数就是个素数,单个素数就是-1
        return 0;
    }
}

快速莫比乌斯函数(Mobius Function)是一个在数论中有重要应用的函数,在处理一些组合计数问题时非常实用。我们可以在一道NOI级别的算法题目中结合它,例如设计一个计算一定范围内所有正整数的约数个数的程序,然后判断是否能被快速莫比乌斯函数除尽。由于涉及到动态规划和对数时间复杂度,这是一道相对高级的题目。 下面是一个简单的C++代码示例,用于求解这个问题: ```cpp #include <vector> #include <cmath> // 计算n的所有因子个数 int countDivisors(int n) { int divCount = 0; for (int i = 1; i <= sqrt(n); ++i) { if (n % i == 0) { // 如果是完全平方数,则有两个因子 if (i * i == n) divCount += 1; else // 否则,包括i和n/i两个因子 divCount += 2; } } return divCount; } // 快速莫比乌斯函数 long long mobiusFunction(int n) { std::vector<int> mu(n + 1, 1); for (int i = 2; i * i <= n; ++i) { if (mu[i] == 1) { for (int j = i * i; j <= n; j += i) { mu[j] *= -1; } } } return mu[n]; } // 题目:给定一个范围[1, N],找出其中哪些数的因子个数可以被快速莫比乌斯函数值整除 bool isMobiusDivisible(int N) { for (int i = 1; i <= N; ++i) { if (countDivisors(i) % mobiusFunction(i) == 0) return true; } return false; } int main() { int N; std::cout << "请输入范围上限 N: "; std::cin >> N; if (isMobiusDivisible(N)) std::cout << "存在数字的因子个数可以被快速莫比乌斯函数值整除。\n"; else std::cout << "不存在这样的数字。\n"; return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

beyond谚语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值