机器学习入门之贝叶斯

# -*- coding: UTF-8 -*-

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

import math
import numpy as np

iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2)

class NaiveBayes:
    def __init__(self):
        self.model = None

    # 数学期望
    @staticmethod
    def mean(X):
        """计算均值
        Param: X : list or np.ndarray

        Return:
            avg : float

        """
        avg = 0.0
        # ========= show me your code ==================
        # here
        avg = np.mean(X)
        # avg = sum(X) / float(len(X))
        # ========= show me your code ==================
        return avg

    # 标准差(方差)
    def stdev(self, X):
        """计算标准差
        Param: X : list or np.ndarray

        Return:
            res : float

        """
        res = 0.0
        # ========= show me your code ==================
        # here
        avg = self.mean(X)
        # res = np.std(X)
        res = math.sqrt(sum([pow(x-avg, 2) for x in X]) / float(len(X)))
        # ========= show me your code ==================
        return res

    # 概率密度函数
    def gaussian_probability(self, x, mean, stdev):
        """根据均值和标注差计算x符号该高斯分布的概率
        Parameters:
        ----------
        x : 输入
        mean : 均值
        stdev : 标准差

        Return:

        res : float, x符合的概率值

        """
        res = 0.0
        # ========= show me your code ==================
        # here
        exp = np.exp(-(x-mean)**2/(2*(stdev**2)))
        res = 1/(np.sqrt(2*np.pi)*stdev)*exp
        # ========= show me your code ==================
        return res

    # 处理X_train
    def summarize(self, train_data):
        """计算每个类目下对应数据的均值和标准差
        Param: train_data : list

        Return : [mean, stdev]
        """
        summaries = [0.0, 0.0]
        # ========= show me your code ==================
        # here
        data = np.array(train_data)
        m, n = data.shape
        for i in range(n):
            summaries.append((self.mean(data[:, i]), self.stdev(data[:, i])))

        # summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
        # ========= show me your code ==================
        return summaries

    # 分类别求出数学期望和标准差
    def fit(self, X, y):
        labels = list(set(y))
        data = {label: [] for label in labels}
        for f, label in zip(X, y):
            data[label].append(f)
        self.model = {
            label: self.summarize(value) for label, value in data.items()
        }
        return 'gaussianNB train done!'

    # 计算概率
    def calculate_probabilities(self, input_data):
        """计算数据在各个高斯分布下的概率
        Paramter:
        input_data : 输入数据

        Return:
        probabilities : {label : p}
        """
        # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
        # input_data:[1.1, 2.2]
        # input_data[i]是列数据
        probabilities = {}
        # ========= show me your code ==================
        for label, value in self.model.items():
            probabilities[label] = 1
            # here
            for i in range(len(value)):
                mean, stdev = value[i]
                probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev)
        # ========= show me your code ==================
        return probabilities

    # 类别
    def predict(self, X_test):
        # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
        label = sorted(self.calculate_probabilities(X_test).items(), key=lambda x: x[-1])[-1][0]
        return label

    # 计算得分
    def score(self, X_test, y_test):
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1

        return right / float(len(X_test))

if __name__ == '__main__':
    model = NaiveBayes()
    model.fit(X_train, y_train)
    print(model.predict([4.4, 3.2, 1.3, 0.2]))
    model.score(X_test, y_test)

#######################################################
# 报错信息:(我还没搞定哭唧唧)
# Traceback (most recent call last):
#   File "D:/machinelearning/myself_machine_learning/datawhale/elementary_algorithms/T5_bayes/bayes.py", line 146, in <module>
#     print(model.predict([4.4, 3.2, 1.3, 0.2]))
#   File "D:/machinelearning/myself_machine_learning/datawhale/elementary_algorithms/T5_bayes/bayes.py", line 130, in predict
#     label = sorted(self.calculate_probabilities(X_test).items(), key=lambda x: x[-1])[-1][0]
#   File "D:/machinelearning/myself_machine_learning/datawhale/elementary_algorithms/T5_bayes/bayes.py", line 122, in calculate_probabilities
#     mean, stdev = value[i]
# TypeError: cannot unpack non-iterable float object
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值