迷宫最短路问题

一、引入

题目:

给定一个n*m的二维整数数组,用来表示一个迷宫,数组中只包含0或1,其中0表示可以走的路,1表示不可通过的墙壁。

最初,有一个人位于左上角(1, 1)处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。

请问,该人从左上角移动至右下角(n, m)处,至少需要移动多少次。

数据保证(1, 1)处和(n, m)处的数字为0,且一定至少存在一条通路。

输入格式

第一行包含两个整数n和m。

接下来n行,每行包含m个整数(0或1),表示完整的二维数组迷宫。

输出格式

输出一个整数,表示从左上角移动至右下角的最少移动次数。

数据范围

1≤n,m≤100

二、思路

  • 搜索树:
    在这里插入图片描述

  • 用vis【】【】 数组记录某个位置是否访问过。访问过为1,未访问过为0。

  • 用一个结构体代表状态的变化。

三、代码

#include <cstdio>
#include <queue>
using namespace std; 
const int N = 105;
struct Node {
	int x, y, step;
	Node(int x, int y, int step): x(x), y(y), step(step) {}
};
//代表上下左右 
int dx[4] = {-1, 1, 0, 0};
int dy[4] = {0, 0, -1, 1};
int g[N][N], n, m, vis[N][N];
bool ok(int x, int y) {
	//越界判断 
	if (x < 0 || y < 0 || x >= n || y >= m || g[x][y] == 1) return false;
	return true;
}
int bfs() {
 	queue<Node> q;
	q.push(Node(0, 0, 0));
	vis[0][0] = 1; 
	while (!q.empty()) {
		Node t = q.front();
		q.pop();
		//判断是否到达终点
		if (t.x == n - 1 && t.y == m - 1) {
			return t.step;
		} 
		//否则向4个方向延伸
		for (int i = 0; i < 4; i++) {
			int fx = t.x + dx[i];
			int fy = t.y + dy[i];
			if (ok(fx, fy) && !vis[fx][fy]) {
				//标记为已访问 
				vis[fx][fy] = 1; 
				q.push(Node(fx, fy, t.step + 1));
			}
		} 
	}
}

int main () {
	scanf("%d%d", &n, &m);
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < m; j++) {
			scanf("%d", &g[i][j]);
		}
	}
	printf("%d", bfs());
	return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值