一、引入
题目:
给定一个n*m的二维整数数组,用来表示一个迷宫,数组中只包含0或1,其中0表示可以走的路,1表示不可通过的墙壁。
最初,有一个人位于左上角(1, 1)处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。
请问,该人从左上角移动至右下角(n, m)处,至少需要移动多少次。
数据保证(1, 1)处和(n, m)处的数字为0,且一定至少存在一条通路。
输入格式
第一行包含两个整数n和m。
接下来n行,每行包含m个整数(0或1),表示完整的二维数组迷宫。
输出格式
输出一个整数,表示从左上角移动至右下角的最少移动次数。
数据范围
1≤n,m≤100
二、思路
-
搜索树:
-
用vis【】【】 数组记录某个位置是否访问过。访问过为1,未访问过为0。
-
用一个结构体代表状态的变化。
三、代码
#include <cstdio>
#include <queue>
using namespace std;
const int N = 105;
struct Node {
int x, y, step;
Node(int x, int y, int step): x(x), y(y), step(step) {}
};
//代表上下左右
int dx[4] = {-1, 1, 0, 0};
int dy[4] = {0, 0, -1, 1};
int g[N][N], n, m, vis[N][N];
bool ok(int x, int y) {
//越界判断
if (x < 0 || y < 0 || x >= n || y >= m || g[x][y] == 1) return false;
return true;
}
int bfs() {
queue<Node> q;
q.push(Node(0, 0, 0));
vis[0][0] = 1;
while (!q.empty()) {
Node t = q.front();
q.pop();
//判断是否到达终点
if (t.x == n - 1 && t.y == m - 1) {
return t.step;
}
//否则向4个方向延伸
for (int i = 0; i < 4; i++) {
int fx = t.x + dx[i];
int fy = t.y + dy[i];
if (ok(fx, fy) && !vis[fx][fy]) {
//标记为已访问
vis[fx][fy] = 1;
q.push(Node(fx, fy, t.step + 1));
}
}
}
}
int main () {
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
scanf("%d", &g[i][j]);
}
}
printf("%d", bfs());
return 0;
}