YOLOv9初探秘,含源码及详解~

实验结果上来看,其效果无论是精度和参数量都要大于过去的一些实时检测模型,其主要创新点是两个分别是提出了Programmable Gradient Information(PGI)的结构以及全新的主干Generalized ELAN(GELAN)。YOLOv9已经开源在Github上了:

官方论文地址:https://arxiv.org/pdf/2402.13616.pdf

官方代码地址:https://github.com/WongKinYiu/yolov9/tree/main

一、引言

YOLO(You Only Look Once)系列算法是目标检测领域的重要分支,以其高效、快速的特性受到了广泛关注。随着版本的迭代,YOLOv8和YOLOv9相继问世,它们在性能上都有所提升。本文将详细分析YOLOv9与YOLOv8在性能方面的差别,探讨其背后的原因,并通过实例来验证这些差别。

二、性能评估指标

在目标检测任务中,常用的性能评估指标包括准确率(Precision)、召回率(Recall)、F1分数、mAP(mean Average Precision)等。这些指标能够全面反映模型在检测目标时的准确性、查全率和综合性能。此外,模型的推理速度、参数量等也是评估性能的重要因素。

三、YOLOv8性能分析

YOLOv8作为YOLO系列的一个新版本,在性能上相较于之前的版本有所提升。它采用了新的骨干网络、检测头和损失函数,使得模型在保持较高准确率的同时,提高了推理速度。此外,YOLOv8还支持在不同硬件平台上运行,具有较好的灵活性和可扩展性。具体来说,YOLOv8在以下几个方面表现出色:

准确率:通过引入新的骨干网络和检测头,YOLOv8能够提取更丰富的特征信息,从而提高了目标检测的准确率。

推理速度:YOLOv8优化了模型结构,减少了计算量,使得推理速度得到了提升。这对于实时目标检测任务具有重要意义。

灵活性:YOLOv8支持在不同硬件平台上运行,包括CPU、GPU等。这使得模型能够适应不同的应用场景和需求。

四、YOLOv9性能分析

YOLOv9在YOLOv8的基础上进行了进一步的改进和优化,使得模型在性能上有了显著的提升。具体来说,YOLOv9在以下几个方面表现出色:

准确率:通过引入新的架构和方法,YOLOv9进一步提高了目标检测的准确率。它采用了基于可逆函数的CNN架构分析,设计了PGI和辅助可逆分支,从而提高了模型的参数使用率。这使得YOLOv9在轻量级模型中也能实现较高的准确率。

推理速度:尽管YOLOv9在准确率上有所提升,但它并没有牺牲推理速度。通过优化模型结构和计算方式,YOLOv9保持了较快的推理速度,满足了实时目标检测的需求。

扩展性:YOLOv9具有较强的扩展性,可以支持更多的任务类型和应用场景。例如,它可以应用于图像分类、实例分割等任务,并且可以通过调整模型结构和参数来适应不同的数据集和任务需求。

五、性能差别分析

从上述分析可以看出,YOLOv9相较于YOLOv8在性能上有了显著的提升。这主要得益于以下几个方面:

架构创新:YOLOv9采用了基于可逆函数的CNN架构分析,设计了PGI和辅助可逆分支。这种创新性的架构使得模型能够更高效地利用参数,提高了准确率和推理速度。而YOLOv8虽然也采用了新的骨干网络和检测头,但在架构创新方面相对保守。

参数使用率:YOLOv9通过引入GELAN等设计,实现了比基于最先进技术的深度可分卷积设计更高的参数使用率。这意味着在相同的参数量下,YOLOv9能够提取更多的特征信息,从而提高了目标检测的准确率。而YOLOv8在参数使用率方面可能稍逊一筹。

轻量级优势:YOLOv9注重轻量级模型的设计和优化,使得模型在保持较高性能的同时,具有更小的体积和更快的推理速度。这对于移动端和嵌入式设备等资源受限的场景具有重要意义。而YOLOv8虽然也支持在不同硬件平台上运行,但在轻量级模型方面的优化可能不如YOLOv9。

扩展性:虽然YOLOv8被定位为一个算法框架而非特定算法,具有较强的可扩展性。但YOLOv9通过引入新的架构和方法,进一步提高了模型的扩展性。它可以支持更多的任务类型和应用场景,为未来的研究和应用提供了更多的可能性。

如果你想要进一步了解更多的相关知识,可以关注下面公众号联系~会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!

5a8015ddde1e41418a38e958eb12ecbd.png

### YOLOv9 源码详解及实现原理 #### 1. 架构概述 YOLOv9引入了一系列改进措施来提升模型性能和效率。这些改进不仅体现在网络架构上,还包括训练策略等方面[^1]。 #### 2. 主要组件分析 ##### 输入预处理模块 为了更好地适应不同尺度的目标,在输入阶段采用了多尺度测试方法,并且增强了数据增强手段以提高泛化能力。此外,还加入了自适应锚框机制用于更精准地定位物体边界框。 ##### Backbone设计 采用CSPNet作为骨干网基础框架,通过跨阶段部分连接(Cross Stage Partial connections)有效减少了计算量并提升了特征提取的效果;同时利用Focus结构替代传统卷积操作进一步优化了速度与精度之间的平衡关系。 ```python class CSPDarknet(nn.Module): def __init__(self, depth_multiple=0.33, width_multiple=0.5): super().__init__() self.backbone = nn.Sequential( Focus(3, int(width_multiple * 64)), Conv(int(width_multiple * 64), int(width_multiple * 128), k=(3, 3), s=(2, 2)), ... ) ``` ##### Neck层构建 Neck部分延续了PANet的设计理念,即Path Aggregation Network路径聚合网络,它可以在不增加太多参数的情况下显著改善小目标检测的表现。值得注意的是,YOLOv9在此基础上做了些微调优工作,比如调整各分支间的权重分配比例等。 ```python def build_neck(self): neck_layers = [] last_channels = [int(depth_multiple * c) for c in (256, 512, 1024)] # Top-down pathway p5_upsampled = F.interpolate(p5_out, scale_factor=2) p4_combined = torch.cat([p4_out, p5_upsampled], dim=1) # Bottom-up pathway ... return neck_layers ``` ##### Head预测单元 不同于某些版本尝试解耦分类与回归任务的做法,YOLOv9依旧保持了经典的Anchor-based方式来进行最终输出。这意味着每个网格单元负责预测固定数量的先验框及其对应的类别概率分布情况[^4]。 ```python class Detect(nn.Module): stride = None def forward(self, x): z = [] # inference output for i in range(len(x)): bs, _, ny, nx = x[i].shape yv, xv = torch.meshgrid(torch.arange(ny).to(device), torch.arange(nx).to(device)) grid_xy = torch.stack((xv, yv), 2).view((ny*nx, 2)).float().to(device) pred_boxes = ((torch.sigmoid(output[..., :4]) * 2.) ** 2 * anchors_wh[i]).view(bs, -1, 4) confidences = torch.sigmoid(output[..., 4]) class_probs = torch.softmax(output[..., 5:], dim=-1) outputs = torch.cat([ pred_boxes, confidences.unsqueeze(-1), class_probs], dim=-1) z.append(outputs.view(bs, -1, num_classes + 5)) return torch.cat(z, 1) ``` #### 3. 训练技巧总结 - 使用Cosine Annealing学习率调度器; - 引入Mosaic Data Augmentation技术扩充样本多样性; - 应用CIoU Loss代替原始IOU损失函数更加关注重叠区域形状差异性; - 实施EMA(Exponential Moving Average)指数滑动平均法稳定收敛过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatpyMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值