R语言 数据处理(一)

本文介绍了使用R语言进行数据处理的基本操作,包括数据合并、提取和降维处理。通过实例展示了如何创建数据框,使用dplyr包的select函数,以及如何利用向量、矩阵和[]操作符进行数据选择。同时,讲解了drop参数在降维中的作用,以及如何进行模糊匹配。
摘要由CSDN通过智能技术生成

数据合并,提取及降维处理

install.packages("dplyr") ##数据处理包dplyr

library(dplyr)

name1 <- c("Bob","Mary","Jane","Kim")

name2 <- c("Bob","Mary","Kim","Jane")

weight <- c(60,65,45,55)

height <- c(170,165,140,135)

birth <- c("1990-1","1980-2","1995-5","1996-4")

accept <- c("no","ok","ok","no")

df1 <- data.frame(name1,weight,height)

rownames(df1) <- letters[1:4] # 赋予行名

df2 <- data.frame(name2,birth,accept)

##上面是通过建立向量再组合来创建数据框

##下面练习数据合并

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值