图论--链式前向星

我们存图的方式通常有邻接矩阵和前向星,邻接矩阵易造成空间浪费,前向星需要sort排序,复杂度是O(nlogn),所以效率不高,链式前向星是前向星的优化,它可以避免排序。

以下是边的存储结构

struct Node{
    int to;
    int w;
    int next;
}edge[maxn];

edge[i].to表示的是第i条边的终点,edge[i].next表示的是与第i条边同起点的下一条边的存储位置,edge[i].w表示的是第i条边的权值

除此之外我们还需要一个head数组,它表示的是以i为起点的第一条边的存储位置,首先将head数组全部赋初值-1

下面是边的读入

void addEdge(int u,int v,int w)//每条边的起点,终点,权值
 {
    edge[cnt].to = v;
    edge[cnt].w = w;
    edge[cnt].next = head[u];//获取与它同起点的边的下一条位置
    head[u] = cnt++;//cnt的初值赋0
 }

head数组是以i为起点的第一条边的存储位置,这个以i为起点的第一条边随着cnt的增加而增加,其实这个第一条边是以该起点为边的最后一条边出现的位置,所以遍历每条边的时候其实是反向遍历的,假设我们要遍历以u为起点的所有边,当遍历到以u为起点的最后一条边的时候,因为head赋予的初值为-1,那么下一次i就等于-1了,循环就不再执行了

 

 for(int i = head[u]; ~i; i = edge[i].next)

我们来模拟一遍,假设现在加入的边的顺序是(1,3)  (2,4) (3,4) (1,2) (3,1) (1,5)

edge[0].to = 3;edge[0].next = head[1] = -1;head[1] = 0;

edge[1].to = 4;edge[1].next = head[2] = -1;head[2] = 1;

edge[2].to = 4;edge[2].next = head[3] = -1;head[3] = 2;

edge[3].to = 2;edge[3].next = head[1] = 0;head[1] = 3;

edge[4].to = 1;edge[4].next = head[3] = 2;head[3] = 4;

edge[5].to = 5;edge[5].next = head[1] = 3;head[1] = 5;

假设我们遍历的是以1为起点的所有边 i = head[1] = 5 ,就是(1,5)这条边,然后i = edge[i].next = 3,就是(1,2)这条边,最后i = edge[i].next = 0,即(1,3)这条边,i = edge[0].next=-1,然后循环结束。至此,以1为起点的所有边就被遍历完了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值