求解单源最短路(Floyd&&Dijstra&&BellmanFord模板)

读入的时候注意有重边的情况 if(e[a][b]>x) e[a][b]=e[b][a]=x (x是边权,e是邻接矩阵,a、b是边的起点和终点,假设是无向图)

Floyd(不能解决负环):

void init()
{
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        {
            if(i==j) e[i][j]=0;
            else e[i][j]=inf;
        }
}

void floyd()
{
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
            {
                if(e[i][k]<inf&&e[k][j]<inf)
                    if(e[i][j]>e[i][k]+e[k][j]) e[i][j]=e[i][k]+e[k][j];
            }
}

Dijkstra(不能解决负权边):

void init()
{
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
        {
            if(i==j) e[i][j]=0;
            else e[i][j]=inf;
        }
}
 
void dijkstra(int vs)
{
    int u;
    for(int i=0;i<n;i++)
    {
        vis[i]=0;
        dis[i]=e[vs][i];
    }
    dis[vs]=0;
    for(int i=1;i<n;i++)
    {
        int mmin = inf;
        for(int j=0;j<n;j++)
        {
            if(!vis[j]&&dis[j]<mmin)
            {
                mmin=dis[j];
                u=j;
            }
        }
        vis[u]=1;
        for(int j=0;j<n;j++)
        {
            if(!vis[j]&&dis[u]+e[u][j]<dis[j])
            {
                dis[j]=dis[u]+e[u][j];
            }
        }
    }
}

Dijkstra(堆优化):

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cctype>
#include<cstring>
#include<utility>
#include<cstdlib>
#include <iomanip>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1e3+7;
const int inf = 0x3f3f3f3f;
int n,dis[maxn];

struct node{
    int v,w;
    node(){}
    node(int _v,int _w){v=_v;w=_w;}
    bool operator < (const node &a)const
    {
        if(w==a.w) return v<a.v;
        return w>a.w;
    }
};

vector<node>edge[maxn];

void dijkstra(int vs)
{
    for(int i=0;i<=n;i++)
        dis[i]=inf;
    dis[vs]=0;
    priority_queue<node> q;
    while(!q.empty()) q.pop();
    q.push(node(vs,dis[vs]));
    while(!q.empty())
    {
        node x=q.top();q.pop();
        for(int i=0;i<edge[x.v].size();i++)
        {
            node y=edge[x.v][i];
            if(dis[y.v]>x.w+y.w)
            {
                dis[y.v]=x.w+y.w;
                q.push(node(y.v,dis[y.v]));
            }
        }
    }
    printf("%d\n",dis[n]);
}

int main()
{
    int a,b,c,m;
    while(scanf("%d%d",&n,&m)==2)
    {
        for(int i=0;i<=n;i++)
            edge[i].clear();
        while(m--)
        {
            scanf("%d%d%d",&a,&b,&c);
            edge[a].push_back(node(b,c));
            edge[b].push_back(node(a,c));
        }
        dijkstra(1);
    }
    return 0;
}

Bellman-Ford(可以解决含负权边的问题):

/**tot是边的条数,N是点的个数,dis是源点到G中每个点的距离*/
bool bellman_ford()
{
    memset(dis,inf,sizeof(dis));
    dis[1]=0;
    bool flag;
    for(int i=1;i<=N-1;i++)
    {
        flag=true;
        for(int j=0;j<tot;j++)
        {
            if(dis[edge[j].v]>dis[edge[j].u]+edge[j].w)
            {
                dis[edge[j].v]=dis[edge[j].u]+edge[j].w;
                flag=false;
            }
        }
        if(flag) break;
    }
    for(int i=0;i<tot;i++)
    {
        if(dis[edge[i].v]>dis[edge[i].u]+edge[i].w)
            return true;
    }
    return false;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值