读入的时候注意有重边的情况 if(e[a][b]>x) e[a][b]=e[b][a]=x (x是边权,e是邻接矩阵,a、b是边的起点和终点,假设是无向图)
Floyd(不能解决负环):
void init()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(i==j) e[i][j]=0;
else e[i][j]=inf;
}
}
void floyd()
{
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(e[i][k]<inf&&e[k][j]<inf)
if(e[i][j]>e[i][k]+e[k][j]) e[i][j]=e[i][k]+e[k][j];
}
}
Dijkstra(不能解决负权边):
void init()
{
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
if(i==j) e[i][j]=0;
else e[i][j]=inf;
}
}
void dijkstra(int vs)
{
int u;
for(int i=0;i<n;i++)
{
vis[i]=0;
dis[i]=e[vs][i];
}
dis[vs]=0;
for(int i=1;i<n;i++)
{
int mmin = inf;
for(int j=0;j<n;j++)
{
if(!vis[j]&&dis[j]<mmin)
{
mmin=dis[j];
u=j;
}
}
vis[u]=1;
for(int j=0;j<n;j++)
{
if(!vis[j]&&dis[u]+e[u][j]<dis[j])
{
dis[j]=dis[u]+e[u][j];
}
}
}
}
Dijkstra(堆优化):
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cctype>
#include<cstring>
#include<utility>
#include<cstdlib>
#include <iomanip>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1e3+7;
const int inf = 0x3f3f3f3f;
int n,dis[maxn];
struct node{
int v,w;
node(){}
node(int _v,int _w){v=_v;w=_w;}
bool operator < (const node &a)const
{
if(w==a.w) return v<a.v;
return w>a.w;
}
};
vector<node>edge[maxn];
void dijkstra(int vs)
{
for(int i=0;i<=n;i++)
dis[i]=inf;
dis[vs]=0;
priority_queue<node> q;
while(!q.empty()) q.pop();
q.push(node(vs,dis[vs]));
while(!q.empty())
{
node x=q.top();q.pop();
for(int i=0;i<edge[x.v].size();i++)
{
node y=edge[x.v][i];
if(dis[y.v]>x.w+y.w)
{
dis[y.v]=x.w+y.w;
q.push(node(y.v,dis[y.v]));
}
}
}
printf("%d\n",dis[n]);
}
int main()
{
int a,b,c,m;
while(scanf("%d%d",&n,&m)==2)
{
for(int i=0;i<=n;i++)
edge[i].clear();
while(m--)
{
scanf("%d%d%d",&a,&b,&c);
edge[a].push_back(node(b,c));
edge[b].push_back(node(a,c));
}
dijkstra(1);
}
return 0;
}
Bellman-Ford(可以解决含负权边的问题):
/**tot是边的条数,N是点的个数,dis是源点到G中每个点的距离*/
bool bellman_ford()
{
memset(dis,inf,sizeof(dis));
dis[1]=0;
bool flag;
for(int i=1;i<=N-1;i++)
{
flag=true;
for(int j=0;j<tot;j++)
{
if(dis[edge[j].v]>dis[edge[j].u]+edge[j].w)
{
dis[edge[j].v]=dis[edge[j].u]+edge[j].w;
flag=false;
}
}
if(flag) break;
}
for(int i=0;i<tot;i++)
{
if(dis[edge[i].v]>dis[edge[i].u]+edge[i].w)
return true;
}
return false;
}