掌握Stable Diffusion:基础提示词攻略——文生图效果直接翻倍!

这次的文章咱们来探讨一下 Stable Difussion 提示词的基础入门。

大家肯定都知道,想要通过 AI 解放生产力,必须要学会指导它向咱们需要的目标前进。

对于 Stable Difussion 来说,就是生图提示词了。

本文将对提示词进行一些简单的介绍,使大家能够快速的学习到提示词的基础概念并生成图片。

提示词基础

提示词与提示词之间需要使用逗号分隔,并且提示词可以换行。

每个提示词的默认权重为 1 ,越靠前的提示词权重相对越高,因此越需要强调的提示词,需要写在越靠前的位置。

提示词的数量最好控制在 75 个单词以内,超过这个数量的提示词,对画面的影响已经微乎其微了。

在图片中不希望出现的元素,可以写入反向提示词中,之后图片中就不会再生成(理论上)。

符号的含义

括号 ( (),[],{} ) 是用来调节提示词权重的:

|
| 小括号-() | 中括号-[] | 大括号{} |
| — | — | — | — |
| 作用 | 权重增加 0.1 | 权重降低 0.1 | 权重增加 0.05 |
| 基础权重 | 1gril-权重 1 | 1gril-权重 1 | 1gril-权重 1 |
| 使用一次 | (1gril)-权重 1.1 | [1gril]-权重 0.9 | {1gril}-权重 1.05 |
| 最多使用 | (((1gril)))-权重 1.331 | [[[1gril]]]-权重 0.729 | {{{1gril}}}-权重 1.15 |

使用小括号可以在提示词后输入冒号 + 数值的方式,精确控制权重,例如:(1gril:0.8),表示为 1gril 这个提示词,设置权重为 0.8。

此种权重设置方式建议设置在 0.3 - 1.5 之间。

这种方式因为其可控性强,可读性高,使用较为广泛。

例如下图就展示了其他提示词相同,eggs 提示词不同权重下的出图效果。

尖括号 ( <> ) 是用来调用 Lora 的,使用方式为 < lora:LoRA文件:权重 >,可以使用 LoRA 模型生成更加具有风格化的图片。

下划线 ( _ ) 起到连接的作用,例如输入 sheep meat,SD 会生成一只羊和一块肉,但是用下划线连接,输入 sheep_meat ,SD 就能正确的输出羊肉的图片。

进阶语法

提示词的生效时间,通过冒号 ( : ) 来进行配置。

例如如果需要在采样进程达到 70% 的时候,进行采样,可以书写提示词[ flower : 0.7 ];

需要在采样过程的前 70% 进行采样,可以书写提示词 [ flower : : 0.7];

整体花朵生成的数量,要比之前多一些。

如果需要对多个提示词进行控制,可以书写提示词 [ stones : flower : 0.7],这样可以控制为前面的 70% 石头的采样生效,后面的 30% 花朵的采样生效。

提示词混合,通过分割号 ( | ) 来进行控制。

例如生成红白相间的发色,可以通过 [ red | white ] hari 来进行控制:

提示词格式

一般情况下,对于画质、画风的提示词,对于画面整体的影响较大, 建议在首行填写。

画质提示词一般是通用的,可以使用 SD 的预设样式保存,之后重复使用时比较方便。

选择对应的提示词,点击“添加到提示词中”,可以很方便的填写通用提示词。

  • 通用画质词:[ masterpiece:1,2],best quality,highres,extremely detailed CG,perfect lighting,8k wallpaper 等

  • 真实系:photograph,photorealistic 等

  • 插画风:illustration,painting,paintbrush 等

  • 二次元:anime,comic,game CG 等

  • 三维场景:3D,C4D render,unreal engine,octane render 等

画风词主要有

  • 赛博朋克风:Cyberpunk

  • 像素风:8bit/16bit pixel

  • 宫崎骏风格:studio ghibli

  • 皮克斯风格:pixel style

  • 水墨画:Chinese ink style

之后填写画面的主体描述,包括人物、年龄、发型、发色、衣着、表情、正在干什么等等。

再然后对场景(咖啡厅、古堡)、环境(雪天、夜晚)、灯光(测光、背光)、构图(特写镜头、正面视觉)进行描述。

下面是 LoRA 、 hypernetwork 等需要触发的内容。

最后是反向提示词,一般使用通用的负面提示词就可以了,主要是禁止 SD 生成低质量、黑白、多手、多脚等情况的图片。

NSFW,(worst quality:2],(low quality:2),(normal quality:2),lowres, normal quality,((monochrome)),((grayscale)),skin spots,acnes,skin blemishes, age spot,(ugly:1.331),(duplicate:1.331),(morbid:1.21),(extra legs:1.331),(fused fingers:1.5),(too many fingers:1.5),(unclear eyes:1.331), lowers, bad hands,missing fingers,extra digit, (((extra arms and legs))),


写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
### Stable Diffusion 模型概述 Stable Diffusion 是一种用于生成高质量像的人工智能模型,其核心机制依赖于扩散过程和变分自编码器(VAE)[^1]。该模型通过逐步向输入数据添加噪声来学习数据分布,在推理阶段则反向执行这一过程——即去噪过程,从而生成新的样本。 具体来说,训练过程中采用最小二乘法优化损失函数,使得模型能够有效地捕捉到复杂的数据结构特征。这种独特的架构允许 Stable Diffusion 实现从文本描述到对应视觉表示的转换功能[^2]。 ### 应用领域 #### 像合成与编辑 借助于强大的生成能力,Stable Diffusion 可广泛应用于艺术创作、设计等领域中的像合成任务。用户只需提供简单的文字提示即可获得风格各异的艺术作品或产品效果[^4]。 #### 文本转片服务 作为一款先进的文生工具,Stable Diffusion 支持根据自然语言指令创建逼真的照片级像,这为虚拟现实场景构建提供了便利条件;同时也可用于辅助设计师快速构思创意方案[^3]。 ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "stabilityai/stable-diffusion-2" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, revision="fp16", torch_dtype=torch.float16) pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值