数论总结

一、欧几里得算法(最大公约数,最小公倍数)

又称辗转相除法,设a,b为整数,gcd(a,b)=gcd(b,a mod b);

int gcd(int a,int b){
	if(b==0)return a;
	return gcd(b,a%b);
}
//
int gcd(int a,int b){
	return b? gcd(b,a%b):a;
}

最小公倍数lcm满足lcm*gcd=a*b

二、扩展欧几里得算法

定理:gcd(a,b)是a,b的最小正线性组合,即gcd(a,b)=a*x+b*y;

裴蜀定理:若ax+by = z,则 gcd(a,b)| z

问题:如何求x,y?

(以下讨论a>b)
显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
当a>b>0 时
设 ax1+ by1= gcd(a,b);
bx2+ (a mod b)y2= gcd(b,a mod b);
根据欧几里德原理有 gcd(a,b) = gcd(b,a mod b);
则:ax1+ by1= bx2+ (a mod b)y2;
即:ax1+ by1= bx2+ (a - [a / b] * b)y2 = ay2+ bx2- [a / b] * by2;(a mod b = a - [a / b]*b;[a / b]代表a整除b)
也就是ax1+ by1 = ay2 + b(x2- [a / b] *y2);
根据恒等定理得:x1=y2;y1=x2- [a / b] *y2;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2
由引理我们知道:ax+by = z,z为gcd(a,b)若干倍,所以我们先求解ax+by = gcd(a,b),再将求出的解乘以 z/gcd(a,b)就好了。

代码:

int x,y,d;//x,y是系数,d是最大公约数 
void gcd(int a,int b,int& d,int &x,int& y){
	if(b==0){
		d=a;x=1;y=0;
	}
	else{
		gcd(b,a%b,d,y,x);
		y-=x*(a/b);
	}
}

但这对于不定方程ax+by=c只是求出了一个特解,之后对于x,y

X=x+(b/gcd)*t

Y=y-(a/gcd)*t

t为任意整数

如果要求X的最小正整数解

Xmin=(x%(b/gcd)+(b/gcd))%(b/gcd)

先模一次有可能是负值,所以加了(b/gcd)再模一次

POJ 1061青蛙的约会

三、素数的分布

π(x):小于等于x的素数个数

x很大时,π(x)近似为x/lnx

一个数为素数的概率大约是1/lnx

#include<cmath>
double log10(double)//以10为底 
double log(double) //以e为底 
注意:可以用lg求x的位数->[lg(x)]+1

四、素数的测试

定理:若n是合数,则必存在小于等于根号n的素因子

筛法:求一个范围内的所有素数,复杂度NloglogN

6N+-1法:除2,3以外,素数满足6N+-1

五、算数基本定理(唯一分解定理)

定理内容:任何一个大于1的自然数,都可以唯一分解成有限个质数的乘积,这里均为质数,其诸指数是正整数。

确定n!分解式中指数的方法:

n!的分解式中素数p的幂指数:

[n/p]+[n/p/p]+[n/p/p/p]+......    `

例1:求n!末尾0的个数
由于n!中2因数个数肯定多于5的因数,所以只用求5的因数个数,套公式即可
例2:求C(2N,N)被p整除多少次
C(2N,N)=(2N)!/N!/N!,求(2N)!和N!中p的因数个数k1和k2,然后答案就是k1-2*k2

六、一些有关素数的特殊性质概念(待更新)

梅森素数,几个素数猜想

七、同余基本性质

第一组:已知a≡b(mod m),有整数c

a-c≡b-c(mod m)

a+c≡b+c(mod m)

ac≡bc(mod m)

第二组:已知a≡b(mod m),c≡d(mod m),x,y为任意整数

ax+cy≡bx+dy(mod m)

ac≡bd(mod m)

第三组:已知ac≡bc(mod m),且d=gcd(c,m)

a≡b(mod m/d)

第四组:

a≡a%m(mod m)

b≡b%m(mod m)

两式子加减乘依然同余,启发我们可以化大数的余数为先取模之后的小数的余数

POJ 2769 Reduced ID Numbers

八、线性同余方程(组)

①一元线性同余方程

POJ 2115 Looooops(前面青蛙的约会那道题已经充分使用了)

②方程组的解法

POJ 2891
HDU 1573
复习用题:HDU3579

九、高次同余方程(待补)

十、中国剩余定理(待补)

十一、二元一次不定方程

形式为ax+by=c

在a>0,b>0时,可以转化为一元线性同余方程ax≡c(mod b)

d=gcd(a,b),当d|c时,方程有解,且有无数解;否则,无解

对于方程的特解x,y,通解X,Y可以表示为

X=x+t*(b/d)

Y=y-t*(a/d)

十一、n元一次不定方程(待补)

十二、

费马大定理:当整数时,关于的方程没有正整数解

毕达哥拉斯三元组:正整数x,y,z满足:x^2+y^2=z^2

定理:正整数x,y,z构成毕达哥拉斯三元组且y为偶数,当且仅当存在互素的m,n(m>n且m,n一奇一偶)使得

x=m^2-n^2

y=2*m*n

z=m^2+n^2

十三、佩尔方程(待补)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值