基础数论总结

基础数论总结

一、数论中的基本概念与性质

1、整除

定义

若整数 b b b除以非零整数 a a a,商为整数,且余数为零, 我们就说 b b b能被 a a a整除(或说 a a a能整除 b b b),表示为 a ∣ b a \mid b ab

性质

(1)反身性

a ∣ a a \mid a aa
证明:
∵ a ÷ a = 1 \because a \div a=1 a÷a=1
∴ a ∣ a \therefore a \mid a aa

(2)反对称性

a ∣ b a \mid b ab b ∣ a b \mid a ba ∣ a ∣ = ∣ b ∣ \left\vert a \right\vert=\left\vert b \right\vert a=b
证明:
∵ a ∣ b , b ∣ a \because a \mid b,b \mid a ab,ba
∴ \therefore b ÷ a = x , a ÷ b = y ( x , y ∈ Z ) b \div a=x,a \div b=y \left(x,y \in \Z\right) b÷a=x,a÷b=y(x,yZ)
∴ { b = a x a = b y \therefore \begin{cases}b=ax\\a=by\end{cases} { b=axa=by
∴ b = a x = b x y \therefore b=ax=bxy b=ax=bxy
∴ x y = 1 \therefore xy=1 xy=1
∴ { x = ± 1 y = ± 1 \therefore \begin{cases} x= \pm 1\\y= \pm 1\end{cases} { x=±1y=±1
∴ ∣ a ∣ = ∣ b ∣ \therefore \left\vert a \right\vert=\left\vert b \right\vert a=b
∣ a ∣ = ∣ b ∣ \left\vert a \right\vert=\left\vert b \right\vert a=b a ∣ b a \mid b ab b ∣ a b \mid a ba
证明:
∵ ∣ a ∣ = ∣ b ∣ \because \left\vert a \right\vert=\left\vert b \right\vert a=b
∴ { a ÷ b = ± 1 b ÷ a = ± 1 \therefore \begin{cases} a \div b= \pm 1\\b \div a= \pm 1\end{cases} { a÷b=±1b÷a=±1
∴ a ∣ b \therefore a \mid b ab b ∣ a b \mid a ba

(3)传递性

a ∣ b a \mid b ab b ∣ c b \mid c bc a ∣ c a \mid c ac
证明:
∵ a ∣ b , b ∣ c \because a \mid b,b \mid c ab,bc
∴ \therefore b ÷ a = x , c ÷ b = y ( x , y ∈ Z ) b \div a=x,c \div b=y \left(x,y \in \Z\right) b÷a=x,c÷b=y(x,yZ)
∴ { b = a x c = b y \therefore \begin{cases}b=ax\\c=by\end{cases} { b=axc=by
∴ c = b y = a x y \therefore c=by=axy c=by=axy
∴ c ÷ a = x y \therefore c \div a=xy c÷a=xy
∴ a ∣ c \therefore a \mid c ac

(4)其他性质

a ∣ b a \mid b ab a ∣ c a \mid c ac a ∣ d a \mid d ad a ∣ ( k a + m b + n c + l d ) a \mid \left(ka+mb+nc+ld\right) a(ka+mb+nc+ld)
证明:
∵ a ∣ b , a ∣ c , a ∣ d \because a \mid b,a \mid c,a \mid d ab,ac,ad
∴ \therefore b ÷ a = x , c ÷ a = y , d ÷ a = z ( x , y , z ∈ Z ) b \div a=x,c \div a=y,d \div a=z \left(x,y,z \in \Z\right) b÷a=x,c÷a=y,d÷a=z(x,y,zZ)
∴ { b = a x c = a y d = a z \therefore \begin{cases}b=ax\\c=ay\\d=az\end{cases} b=axc=ayd=az
∴ ( k a + m b + n c + l d ) ÷ a = ( k a + m x a + n y a + l z a ) ÷ a = ( k + m x + n y + l z ) \therefore \left(ka+mb+nc+ld\right) \div a=\left(ka+mxa+nya+lza\right) \div a=\left(k +mx+ny+lz\right) (ka+mb+nc+ld)÷a=(ka+mxa+nya+lza)÷a=(k+mx+ny+lz)
∴ a ∣ ( k a + m b + n c + l d ) \therefore a \mid \left(ka+mb+nc+ld\right) a(ka+mb+nc+ld)
②质数 p ∣ a b p \mid ab pab p ∣ a p \mid a pa p ∣ b p \mid b pb
证明:
假设 p ∤ a p \nmid a pa p ∤ b p \nmid b pb
∵ p ∤ a , p ∤ b \because p \nmid a,p \nmid b pa,pb
∴ a \therefore a a中不含有质因子 p p p b b b中不含有质因子 p p p
∴ a b \therefore ab ab中不含有质因子 p p p
∴ p ∤ a b \therefore p \nmid ab pab,与 p ∣ a b p \mid ab pab矛盾
∴ \therefore 假设不成立
∴ p ∣ a \therefore p \mid a pa p ∣ b p \mid b pb
③连续 n n n个整数中恰有一个整数是 n n n的倍数
证明:
设这 n n n个数为 a , a + 1 , ⋯   , a + n − 1 , a ≡ r ( m o d n ) , 1 ⩽ r ⩽ n a,a+1,\cdots,a+n-1,a \equiv r \pmod{n},1 \leqslant r \leqslant n a,a+1,,a+n1,ar(modn),1rn
∴ ( a + n − r ) ≡ ( r + n − r ) ≡ n ≡ 0 ( m o d n ) \therefore \left(a+n-r\right) \equiv \left(r+n-r\right) \equiv n \equiv 0 \pmod{n} (a+nr)(r+nr)n0(modn)
∵ 0 ⩽ n − r < n \because 0 \leqslant n-r < n 0nr<n
∴ n ∣ ( a + n − r ) \therefore n \mid \left(a+n-r\right) n(a+nr)
∴ \therefore 连续 n n n个整数中恰有一个整数是 n n n的倍数
④连续 n n n个整数的乘积为 n ! n! n!的倍数
证明:
设这 n n n个数为 a , a + 1 , ⋯   , a + n − 1 a,a+1,\cdots,a+n-1 a,a+1,,a+n1
∵ C a + n − 1 n = ∏ i = 1 n ( a + n − i ) n ! \because C_{a+n-1}^{n}=\frac{\prod \limits_{i=1}^n \left(a+n-i\right)}{n!} Ca+n1n=n!i=1n(a+ni)为整数
∴ n ! ∣ ∏ i = 1 n ( a + n − i ) \therefore n! \mid \prod \limits_{i=1}^n \left(a+n-i\right) n!i=1n(a+ni)

2、质数与合数

定义

(1)质数

一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数

(2)合数

合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数

性质

质数无穷多

证明(质数无穷多的证明方法有许多,这里只展示1种,其实我知道两种,感兴趣的可以上网查):
假设质数只有 n n n
从小到大依次排列为 p 1 , p 2 , ⋯   , p n p_{1},p_{2}, \cdots ,p_{n} p1,p2,,pn,设 N = ∏ i = 1 n p i N=\prod \limits_{i=1}^n p_{i} N=i=1npi
∵ p 1 ∤ N \because p_{1} \nmid N p1N, p 2 ∤ N , ⋯   , p n ∤ N p_{2} \nmid N,\cdots,p_{n} \nmid N p2N,,pnN
∴ N \therefore N N为质数,与质数只有 n n n个矛盾
∴ \therefore 假设不成立
∴ \therefore 质数无穷多

算术基本定理

每一个合数都可以以唯一形式被写成质数的乘积
证明:
假设合数可以以多种方式写成多个质数的乘积,设最小的是 n n n
n = ∏ i = 1 r ( p i a i ) = ∏ i = 1 s ( q i b i ) n=\prod \limits_{i=1}^{r}(p_{i}^{a_{i}})=\prod \limits_{i=1}^{s}(q_{i}^{b_{i}}) n=i=1r(piai)=i=1s(qibi)
∵ p 1 ∣ ∏ i = 1 s ( q i b i ) \because p_{1} \mid \prod \limits_{i=1}^{s}(q_{i}^{b_{i}}) p1i=1s(qibi)
∴ q 1 b 1 , q 2 b 2 , ⋯   , q s b s \therefore q_{1}^{b_{1}},q_{2}^{b_{2}},\cdots,q_{s}^{b_{s}} q1b1,q2b2,,qsbs中有一个数能被 p 1 p_{1} p1整除
∴ \therefore 不妨设为 q 1 q_{1} q1
∵ q 1 \because q_{1} q1也是质数,因此 q 1 = p 1 q_{1}=p_{1} q1=p1
假设 a 1 > b 1 a_{1} > b_{1} a1>b1
∴ p 1 a 1 − b 1 ∏ i = 2 r ( p i a i ) = ∏ i = 2 s ( q i b i ) \therefore p_{1}^{a_{1}-b_{1}} \prod \limits_{i=2}^{r}(p_{i}^{a_{i}})=\prod \limits_{i=2}^{s}(q_{i}^{b_{i}}) p1a1b1i=2r(piai)=i=2s(qibi)
∴ q 2 b 2 , q 3 b 3 , ⋯   , q s b s \therefore q_{2}^{b_{2}},q_{3}^{b_{3}},\cdots,q_{s}^{b_{s}} q2b2,q3b3,,qsbs中有一个数能被 p 1 p_{1} p1整除
∵ p 1 = q 1 ≠ q i ( i ≠ 1 ) \because p_{1}=q_{1} \ne q_{i}(i \ne 1) p1=q1=qi(i=1)
∴ a 1 ⩽ b 1 \therefore a_{1} \leqslant b_{1} a1b1
同理, ∴ a 1 ⩾ b 1 \therefore a_{1} \geqslant b_{1} a1b1
∴ a 1 = b 1 \therefore a_{1} = b_{1} a1=b1
∴ \therefore 存在小于 n n n的整数 m = ∏ i = 2 r ( p i a i ) = ∏ i = 2 s ( q i b i ) m=\prod \limits_{i=2}^{r}(p_{i}^{a_{i}})=\prod \limits_{i=2}^{s}(q_{i}^{b_{i}}) m=i=2r(piai)=i=2s(qibi)可以用多于一种的方式写成多个质数的乘积,这与 n n n的最小性矛盾
∴ \therefore 每一个合数都可以以唯一形式被写成质数的乘积

3、最大公约数和最小公倍数

定义

(1)约数与倍数

如果整数 a a a能被整数 b b b整除, a a a就叫做 b b b的倍数, b b b就叫做 a a a的约数

(2)公约数与公倍数

几个整数中公有的约数,叫做这几个整数的公约数;几个整数中公有的倍数,叫做这几个整数的公倍数

(3)最大公约数与最小公倍数

几个整数的公约数中,最大的一个,叫做这几个数的最大公约数;几个整数的公倍数中,最小的一个,叫做这几个数的最小公倍数数

(4)互质

∀ a , b ∈ N \forall a,b \in N a,bN,若(a,b)=1,则称 a , b a,b a,b互质

(5)欧拉函数

1 1 1~ N N N中与 N N N互质的数的个数被称为欧拉函数,记为 φ ( N ) = N × ∏ 质 数 p ∣ N ( 1 − 1 p ) \varphi \left(N\right)=N \times \prod \limits_{质数p|N}(1-\frac{1}{p}) φ(N)=N×pN(1p1)

(6)积性函数

如果当 a , b a,b a,b互质,有 f ( a b ) = f ( a ) × f ( b ) f \left(ab\right)=f \left(a\right) \times f \left(b\right) f(ab)=f(a)×f(b),那么称函数 f f f为积性函数

性质

∀ a , b ∈ Z \forall a,b \in \Z a,bZ g c d ( a , b ) × l c m ( a , b ) = a b gcd\left(a,b\right) \times lcm\left(a,b\right)=ab gcd(a,b)×lcm(a,b)=ab
证明:
g c d ( a , b ) = d , a = a 0 d , b = b 0 d , ( a 0 , b 0 ) = 1 gcd\left(a,b\right)=d,a=a_{0}d,b=b_{0}d,(a_{0},b_{0})=1 gcd(a,b)=d,a=a0d,b=b0d,(a0,b0)=1
l c m ( a , b ) = l c m ( a 0 , b 0 ) × d = a 0 b 0 d lcm\left(a,b\right)=lcm\left(a_{0},b_{0}\right) \times d=a_{0}b_{0}d lcm(a,b)=lcm(a0,b0)×d=a0b0d
∴ g c d ( a , b ) × l c m ( a , b ) = d × a 0 b 0 d = a 0 b 0 d 2 = ( a 0 d ) × ( b 0 d ) = a b \therefore gcd\left(a,b\right) \times lcm\left(a,b\right)=d \times a_{0}b_{0}d=a_{0}b_{0}d^{2}=\left(a_{0}d\right) \times \left(b_{0}d\right)=ab gcd(a,b)×lcm(a,b)=d×a0b0d=a0b0d2=(a0d)×(b0d)=ab
∀ n > 1 , 1 − n \forall n > 1,1-n n>1,1n中与 n n n互质的数的和为 n × φ ( n ) 2 \frac{n \times \varphi \left(n\right)}{2} 2n×φ(n)
证明:
∵ g c d ( n , x ) = g c d ( n , n − x ) \because gcd \left(n,x\right)=gcd \left(n,n-x\right) gcd(n,x)=gcd(n,nx)
∴ \therefore

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值