【TensorFlow】神经网络中间层截取、可视化中间层结果

神经网络截取中间层

在预测的过程中,想要将神经网络模型的中间层结果获取到,并进行可视化。

训练过程中搭建的模型代码如下:

class_num = 3
base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,
                                               include_top=False,
                                               weights="imagenet")
base_model.trainable = False
model = tf.keras.models.Sequential([
    tf.keras.layers.experimental.preprocessing.Rescaling(1. / 127.5, offset=-1, input_shape=IMG_SHAPE),
    base_model,
    tf.keras.layers.Dense(512, activation="relu"),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.GlobalAveragePooling2D(),
    tf.keras.layers.Dense(class_num, activation='softmax'),
])
model.compile(optimizer=tf.optimizers.Adam(0.001),
              loss=tf.keras.losses.CategoricalCrossentropy(),
              metrics=['binary_crossentropy', 'accuracy'])
history = model.fit(train_ds, validation_data=val_ds, epochs=10)
model.save("./models/model.h5")

实现中间层获取的思路如下:

首先在预测之前读取保存的模型文件

model = tf.keras.models.load_model(model_path)

然后构建一个新的模型,结构为读取的原model的一部分,对于正常搭建的神经网络,直接使用 model.layers[m:n] 就可以截取到m到n-1层的网络;
但是在本次实验中,使用了keras中的mobilenetv2作为本次网络搭建中的base_model,虽然base_model有155层,但是将训练完成后保存的模型,在预测时进行读取后,这155层都将被视为一层,该层名称为:mobilenetv2_1.00_224 ,下图为读取model的summary:
在这里插入图片描述
也就是说,将155层的mobilenet在此压缩为了1层,在这1层的内部又包含了155层,所以在此处截取网络时,就需要采取一些操作。

首先介绍keras中搭建模型的两个主要方式:序列式和函数式。

1)序列式:像搭积木一样,将所有的层在Sequential中进行依次搭建

model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)), 
    keras.layers.Dense(128, activation='relu'),  
    keras.layers.Dense(10, activation='softmax')  
])

2)函数式:将网络的先后逻辑在代码中写好,将整个网络的输入和输出赋值给Model函数

inputs = keras.Input(shape=(28, 28))
x = keras.layers.Flatten()(inputs)
x = keras.layers.Dense(128, activation='relu')(x)
outputs = keras.layers.Dense(10, activation='softmax')(x)

model = keras.Model(inputs, outputs)

Keras中的 MobileNetV2 函数生成的是函数式的模型,因此无法直接在序列式中搭建,直接采用下面的方式会出现错误:

new_model = tf.keras.Sequential([
	model.layers[0],
	model.layers[1].layers[0:5],
])

因此采取的截取解决方案如下:

解决方案一

# 获取 model.layers[1]的 0到4层
# 其中f为第0层,m为1到3层, l为第4层
f, *m, l=model.layers[1].layers[0:5]

# 将 model.layers[0](rescaling预处理层) 与 截取的f,*m,l拼接在一起
model_1 = tf.keras.Sequential([
	model.layers[0],
	f,*m,l
])

在上面代码中,model.layers[1]mobilenetv2_1.00_224model.layers[0]rescaling预处理层。
思想就是将函数式模型mobilenetv2_1.00_224中的层直接取出来,赋值给f,*m,l 变量,这些变量表示的就是某些具体的层,可以将变量通过Sequential进行组合,搭建出一个子网络。
这个方案有一种缺陷,就是只能根据索引来获取某些层。

解决方案二:

model_slice = tf.keras.models.Model(inputs=model.get_layer("mobilenetv2_1.00_224").input,
                                    outputs=model.get_layer("mobilenetv2_1.00_224").get_layer("Conv1").output,
                                    name="model_slice")
model_2 = tf.keras.Sequential([
    model.get_layer("rescaling"),
    model_slice
])

采用函数式模型,获取mobilenetv2_1.00_224的输入和某一层的输出,组成model_slice,将其作为Sequential的一个元素即可。

可视化

# 打开并读取图片
img_init = cv2.imread(img_path)  
img_init = cv2.resize(img_init, (224, 224))
img = np.asarray(img_init)

# 将图片通过子模型,得到中间层输出model_slice_feature 
model_slice_feature = model_2.predict(img.reshape(1, 224, 224, 3))

# 将model_slice_feature传入可视化函数中进行可视化
visualize_feature_map(model_slice_feature)

# 将图片通过原model,得到预测结果
outputs = model.predict(img.reshape(1, 224, 224, 3))
predict_index = np.argmax(outputs)
predict_label = class_names[predict_index]

可视化函数的代码:

def get_row_col(num_pic):
    squr = num_pic ** 0.5
    row = round(squr)
    col = row + 1 if squr - row > 0 else row
    return row, col


def visualize_feature_map(img_batch):
    feature_map = np.squeeze(img_batch, axis=0)
    print(feature_map.shape)

    feature_map_combination = []
    plt.figure(figsize=(6, 6.5))
    plt.suptitle("Hidden layer feature map")

    num_pic = feature_map.shape[2]
    row, col = get_row_col(num_pic)

    for i in range(0, num_pic):
        feature_map_split = feature_map[:, :, i]
        feature_map_combination.append(feature_map_split)
        plt.subplot(row, col, i + 1)
        plt.imshow(feature_map_split, cmap="gray")
        plt.axis('off')
        plt.title('feature_map_{}'.format(i), fontdict={'size':6})

    plt.savefig('feature_map.png')
    plt.show()

    # 各个特征图按1:1 叠加
    feature_map_sum = sum(ele for ele in feature_map_combination)
    plt.imshow(feature_map_sum)

效果展示:
在这里插入图片描述

参考

https://blog.csdn.net/guolindonggld/article/details/106459317

  • 2
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
深度学习是一种机器学习方法,通过构建包含多个中间层的神经网络来进行模型训练和预测。深度学习模型的每一层都负责从输入数据中提取不同级别的特征表示,这些特征表示也被称为中间层。 孪生网络是一种特殊的深度学习模型,它包含两个相同结构的子网络,每个子网络分别处理一对输入数据。通过比较两个子网络的输出,可以进行任务,例如人脸识别中的同一性验证。 在深度学习中,理解中间层的表示对于模型的性能和可解释性都非常重要。一种常用的方法是可中间层的输出,以了解数据在不同层次上的表示。这可以通过PyTorch等深度学习框架来实现。 使用PyTorch进行深度学习模型的训练时,可以通过在适当的位置插入代码,将中间层的输出提取出来并可。一种常见的做法是使用PyTorch的钩子(hook)函数来截取中间层的输出。钩子函数会在网络前向传播过程中被调用,并将中间层的输出保存下来。 通过提取并可中间层的输出,我们可以观察到数据在不同层次上的特征表示。例如,在图像分类任务中,我们可以观察到第一层中间层可能提取简单的边缘特征,而越靠近输出层的中间层则可能提取更高级别的语义特征。 可中间层有助于我们理解网络的工作原理,并可以帮助我们进行模型调优和故障排查。通过观察中间层的输出,我们可以发现模型中存在的潜在问题,并根据需要进行调整和改进。 总而言之,深度学习中的中间层表示对于模型的性能和解释性至关重要。通过使用PyTorch等深度学习框架,我们可以提取并可中间层的输出,以增进对模型的理解,并改进和优模型设计。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KyrieLiu52

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值