Tensorflow2.0 卷积神经网络可视化 (一)中间特征层可视化

本文介绍了如何在Tensorflow2.0中使用VGG16网络对图像的中间特征层进行可视化。通过加载图片并构建多特征层输出模型,观察不同层对图像特征的捕捉,揭示随着网络深度增加,特征抽象度和激活稀疏度的变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中间特征层可视化

导入ImageNet VGG16网络

导入基础包

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf

导入ImageNet VGG16网络

VGG16_model = tf.keras.applications.VGG16(include_top=True)
VGG16_model.summary()

加载任一图片

随便网上找一张图,比如使用率最高的猫星人
在这里插入图片描述
读取本地图片

def prepocess(x):
    x = tf.io.read_file(x)
    x = tf.image.decode_jpeg(x, channels=3)
    print(x.shape)
    x = tf.image.resize(x, [224,224])
    x = tf.cast(x, dtype=tf.float32)/255.
    return x

img_path='Cat.jpg'
img=prepocess
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值