Tensorflow
文章平均质量分 88
智元元
这个作者很懒,什么都没留下…
展开
-
Tensorflow函数说明(4)—— variable_scope/name_scope
主要针对 tf.get_variable 来介绍共享变量的用法。tf.get_variable 与 tf.variable 的用法不同。前者在创建变量时会查名字,如果给的名字在之前已经被别的变量占用,则会报错,不会创建相应变量。而后者并不进行检查,如果有重复,则自动的修改名字,加上数字来进行区别。所以从这来看要想共享变量并不能通过使用相同的名字来调用多次 tf.get_variable 和 tf....转载 2018-05-08 20:36:48 · 178 阅读 · 0 评论 -
TensorFlow学习笔记(1)----基础概念和程序的形式
1.概念graph:图,表示具体的计算任务session:会话,图需要在会话中执行,一个会话可以包含很多图tensor:张量,在此表示数据,类型是numpy::ndarrayvariable:就是本意变量,图的重要组成部分operation:简称op,是图中计算的节点,输入tensor计算后产生tensorfeed、fetch:意思是给图添加数据和获取图中的数据,因为训练过程中有些数据需要动态获得...转载 2018-04-26 19:29:58 · 165 阅读 · 0 评论 -
机器学习环境搭建:GTX970+Ubutnu1404_64bit+TensorFlow(GPU)
TF的GPU版本需要安装CUDA和cuDNN,而在Ubuntu中安装显卡驱动稍微麻烦一点。下面的安装比较简单:1.检查显卡支持情况https://developer.nvidia.com/cuda-gpus2.下载一些东西显卡的驱动:http://www.geforce.cn/driverscuda7.5 tool kit(需要注册):https://developer.nvidia.com/cu...转载 2018-04-26 19:30:22 · 907 阅读 · 0 评论 -
笔记本建立Tensorflow(GPU)环境
笔记本TF环境构建与台式机非常类似,主要是安装CUDA的方式不一样,并且笔记本安装CUDA比较麻烦,经过多次测试找到了一种比较简单有效的方法。基本环境:ubuntu16-64bit,CUDA8,cuDNN5.1,python2.7,TF0.11(已经支持cuDNNv5了)1. 安装CUDA8目标系统是Ubuntu16-64bit,经过多次尝试,只有deb安装方式可行,其他的方式没有成功过。注意:最...转载 2018-04-26 19:30:44 · 738 阅读 · 0 评论 -
深度学习之卷积神经网络CNN及tensorflow代码实现示例
一、CNN的引入在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的。当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 28×28 的手写数字图片,输入层的神经元就有784个,如下图所示: 若在中间只使用一层隐藏层,参数 w 就有 784×15=11760 多个;若输入的是28×28 带有颜色的RGB格式的手写数字图片...转载 2018-05-04 19:34:55 · 352 阅读 · 0 评论 -
用Tensorflow基于Deep Q Learning DQN 玩Flappy Bird
前言2013年DeepMind 在NIPS上发表Playing Atari with Deep Reinforcement Learning 一文,提出了DQN(Deep Q Network)算法,实现端到端学习玩Atari游戏,即只有像素输入,看着屏幕玩游戏。Deep Mind就凭借这个应用以6亿美元被Google收购。由于DQN的开源,在github上涌现了大量各种版本的DQN程序。但大多是复...转载 2018-05-18 20:24:02 · 734 阅读 · 1 评论 -
基于TensorFlow的Cats vs. Dogs(猫狗大战)实现和详解(1)
官方的MNIST例子里面训练数据的下载和导入都是用已经写好的脚本完成的,至于里面实现细节也没高兴去看源码,感觉写得太正式,我这个初学者不好理解。于是在优酷上找到了KevinRush这么一个播主,里面的视频教程讲得挺清晰的,于是跟着视频做了一个猫狗大战的图像识别程序。一、猫狗大战数据集 Cats vs. Dogs(猫狗大战)是Kaggle大数据竞赛某一年的一道赛题,利用给定的数据集,用算法实现猫和...转载 2018-05-02 23:23:10 · 541 阅读 · 0 评论 -
基于TensorFlow的Cats vs. Dogs(猫狗大战)实现和详解(1)
官方的MNIST例子里面训练数据的下载和导入都是用已经写好的脚本完成的,至于里面实现细节也没高兴去看源码,感觉写得太正式,我这个初学者不好理解。于是在优酷上找到了KevinRush这么一个播主,里面的视频教程讲得挺清晰的,于是跟着视频做了一个猫狗大战的图像识别程序。一、猫狗大战数据集 Cats vs. Dogs(猫狗大战)是Kaggle大数据竞赛某一年的一道赛题,利用给定的数据集,用算法实现猫和...转载 2018-05-06 14:50:31 · 2026 阅读 · 0 评论 -
TensorFlow 从入门到精通(一):安装和使用
安装过程PIP 安装安装 PIP安装 TensorFlowPIP 安装的优缺点源码编译安装下载源码安装 Bazel配置编译源码安装的优缺点Docker 镜像安装官方镜像创建 Docker 用户组启动 Docker 容器Docker 镜像安装的优缺点使用过程K40 上运行输出M40 上运行输出GTX1080 上运行输出P40 上输出注意事项安装过程目前较为稳定的版本为 0.12,本文以此为例。其他版...转载 2018-05-06 20:00:04 · 180 阅读 · 0 评论 -
TF-卷积函数 tf.nn.conv2d 介绍
下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)除去name参数用以指定该操作的name,与方法有...原创 2018-05-08 19:50:09 · 119 阅读 · 0 评论 -
TensorFlow学习笔记(2)----Softmax Regression分类MNIST
1.简要介绍Softmax Regression直观地看,每个像素乘个系数加个偏置,最后得到一个属于某个分类的比重,表示“支持图片是数字i的证据有多强烈“上图红色代表负数贡献,蓝色代表正贡献。具体的公式就是:x表示图像,w是系数,b是偏置系数。softmax会把每个分类的证据都求解出来,然后使用指数归一化:这里的x又表示获得的证据evidence数值。简单表示为:softmax在本例分类其中的位置...转载 2018-04-26 19:29:37 · 148 阅读 · 0 评论 -
TensorFlow学习笔记(3)----CNN识别MNIST手写数字
卷积神经网络(Convolutional Neural Networks,CNN)是个常用的神经网络构型,考虑了图像的结构信息,对MNIST的效果更好一些。CNN包含的主要操作:convolution和pooling在TF中都有对应的函数,直接构建网络即可。CNN的具体介绍很多,这里不再赘述。本文主要介绍TF的实现,包括一些主要函数、步骤的说明,先浏览一下程序:[python] view plai...转载 2018-04-26 19:29:17 · 209 阅读 · 0 评论 -
TensorFlow学习笔记(4)----完整的工程示例:全连接前馈网络识别MNIST
该例子不关心最后的训练精度(只有90%),只是尽可能展示一个完整TF工程。对于一些比较大的工程,单文件方式不是很合适,需要多个文件配合。从逻辑上一般分为:推理(Inference) 、损失(Loss)、训练(traning )和评估( evaluation)这些步骤,代码位置:原始代码下载地址(只需要mnist.py 和fully_connected_feed.py)其中:mnist.py是构建...转载 2018-04-26 19:28:58 · 365 阅读 · 0 评论 -
基于TensorFlow的Cats vs. Dogs(猫狗大战)实现和详解(2)
2. 卷积神经网络模型的构造——model.py 关于神经网络模型不想说太多,视频中使用的模型是仿照TensorFlow的官方例程cifar-10的网络结构来写的。就是两个卷积层(每个卷积层后加一个池化层),两个全连接层,最后一个softmax输出分类结果。import tensorflow as tfdef inference(images, batch_size, n_classes)...转载 2018-05-02 23:24:43 · 531 阅读 · 0 评论 -
TensorFlow的一些基本概念
白天跟着TensorFlow的官方文档把最简单的MNIST模型跑通了,基本过程算是大致理清了,但程序看一遍下来,发现TensorFlow中很多基本概念还不是很理解,比如tensor这个东西怎么理解,基于图又是怎么回事,于是打道回府从基本概念开始看起。庆幸的是目前有很多人在学这个,很多学习资料已经归类整理好了,省去了自己重新找的时间,这里整理了一下自己查阅的资料,汇总了一篇。TensorFlow是基...转载 2018-05-02 23:26:17 · 178 阅读 · 0 评论 -
最新重磅TensorFlow学习资料
网站:TensorFlow Developer Summit视频:playlistwww.youtube.com友情提示:建议先看一遍视频再结合PPT比较好理解:)最新学习资料:Keynotetf.data: Fast, flexible, and easy-to-use input pipelinesEager executionML In Javascript (TensorFlow.js)...原创 2018-05-10 22:04:35 · 204 阅读 · 0 评论 -
香港科技大学TensorFlow课件分享
这是一套香港科技大学发布的极简 TensorFlow 入门教程,三天全套幻灯片教程已被分享到 Google Drive。机器之心将简要介绍该教程并借此梳理 TensorFlow 的入门概念与实现。该教程第一天先介绍了深度学习和机器学习的潜力与基本概念,而后便开始探讨深度学习框架 TensorFlow。首先我们将学到如何安装 TensorFlow,其实我们感觉 TensorFlow 环境配置还是相当...转载 2018-05-10 22:08:01 · 351 阅读 · 0 评论 -
经典 CNNs 的 TensorFlow 实现资源汇总
本文简单整理了网上公布的基于 TensorFlow 实现图像语义分析的一些经典网络,方便大家参考学习。1. TensorFlow-SlimTF-Slim 是 tensorflow 较新版本的扩充包,可以简化繁杂的网络定义,其中也提供了一些demo:AlexNetInceptionV1/V2/V3OverFeatResNetVGG例如 VGG-16 网络,寥寥数行就可以定义完毕:def vgg16(...转载 2018-05-10 22:16:57 · 499 阅读 · 0 评论 -
使用Tensorflow和MNIST识别自己手写的数字
使用Tensorflow和MNIST识别自己手写的数字最近在学习神经网络相关的东西,发现有很多资料是Tensorflow教程上的内容,但是教程很多只是一个验证官方程序的过程。如何将官方程序变成自己可以利用的程序,网上似乎资料比较少,所以我就来介绍一下如何使用Tensorflow和MNIST搭建自己的手写识别算法,识别自己写的数字(比如下面我写的这个苍劲有力的3~~)。本文也参考了国外大神博客的内容...转载 2018-05-11 08:37:47 · 646 阅读 · 0 评论 -
TensorFlow学习笔记(8)----CNN分类CIFAR-10数据集
该文章是对TF中文手册的卷积神经网络和英文手册Convolutional Neural Networks部分所包含程序的解读,旨在展示CNN处理规模比较大的彩色图片数据集(分类问题)的完整程序模型,训练中使用交叉熵损失的同时也使用了L2范式的稀疏化约束,例子修改后就可以训练自己的数据。这篇博客按照程序工作的顺序,从cifar10_train.py开始,依次解读途径的每个重要函数,具体细节还需要自己...转载 2018-04-26 19:27:18 · 251 阅读 · 0 评论 -
TensorFlow学习笔记(7)----TensorBoard_2
比之前的例子更加庞大,使用全连接识别MNIST,需要命名空间更多,程序更灵活,但基本的函数换是那些。[python] view plain copy from __future__ import absolute_import from __future__ import division from __future__ import print_function import tens...转载 2018-04-26 19:27:42 · 167 阅读 · 0 评论 -
TensorFlow学习笔记(6)----TensorBoard_1
以一个曲线拟合的小例子说明要使用TensorBoard,需要对程序添加那些额外的东西。程序:[python] view plain copy import tensorflow as tf import numpy as np # Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3 x_data = np.rando...转载 2018-04-26 19:28:05 · 187 阅读 · 0 评论 -
TensorFlow学习笔记(5)----TF生成数据的方法
正常情况下,使用tf.initialize_all_variables()初始化变量,在完全构建好模型并加载之后才运行这个操作。生成数据的主要方法如下1)如果需要利用已经初始化的参数给其他变量赋值TF的变量有个initialized_value()属性,就是初始化的值,使用方法如下:[python] view plain copy # 原始的变量 weights = tf.Variable(tf...转载 2018-04-26 19:28:32 · 151 阅读 · 0 评论