attention方法
文章平均质量分 55
智元元
这个作者很懒,什么都没留下…
展开
-
目前主流 attention 方法
知乎:https://www.zhihu.com/question/68482809原创 2018-06-02 20:40:36 · 1704 阅读 · 0 评论 -
Deep Attention Recurrent Q-Network 5vision groups
摘要:本文将 DQN 引入了 Attention 机制,使得学习更具有方向性和指导性。(前段时间做一个工作打算就这么干,谁想到,这么快就被这几个孩子给实现了,自愧不如啊( ⊙ o ⊙ )) 引言:我们知道 DQN 是将连续 4帧的视频信息输入到 CNN 当中,那么,这么做虽然取得了不错的效果,但是,仍然只是能记住这 4 帧的信息,之前的就会遗忘。所以就有研究者提出了 Deep Recurre...原创 2018-06-02 20:46:17 · 332 阅读 · 0 评论 -
浅谈Attention-based Model【原理篇】
http://blog.csdn.net/wuzqchom/article/details/75792501计划分为三个部分: 浅谈Attention-based Model【原理篇】(你在这里) 浅谈Attention-based Model【源码篇】 浅谈Attention-based Model【实践篇】0. 前言 看了台大的李宏毅老师关于Attention部分的内容,这一部分讲的不错(其实...转载 2018-06-02 21:41:41 · 4528 阅读 · 0 评论 -
浅谈Attention-based Model【源码篇】
源码不可能每一条都详尽解释,主要在一些关键步骤上加了一些注释和少许个人理解,如有不足之处,请予指正。 计划分为三个部分: 浅谈Attention-based Model【原理篇】 浅谈Attention-based Model【源码篇】(你在这里) 浅谈Attention-based Model【实践篇】 在之前的博客:浅谈Attention-based Model【原理篇】中,介绍了Attent...转载 2018-06-02 21:43:11 · 378 阅读 · 0 评论 -
【计算机视觉】深入理解Attention机制
1. 什么是Attention机制?其实我没有找到attention的具体定义,但在计算机视觉的相关应用中大概可以分为两种:1)学习权重分布:输入数据或特征图上的不同部分对应的专注度不同,对此Jason Zhao在知乎回答中概括得很好,大体如下: - 这个加权可以是保留所有分量均做加权(即soft attention);也可以是在分布中以某种采样策略选取部分分量(即hard attention)...转载 2018-06-02 21:46:43 · 2020 阅读 · 0 评论 -
Deep Learning基础--理解LSTM/RNN中的Attention机制
导读目前采用编码器-解码器 (Encode-Decode) 结构的模型非常热门,是因为它在许多领域较其他的传统模型方法都取得了更好的结果。这种结构的模型通常将输入序列编码成一个固定长度的向量表示,对于长度较短的输入序列而言,该模型能够学习出对应合理的向量表示。然而,这种模型存在的问题在于:当输入序列非常长时,模型难以学到合理的向量表示。在这篇博文中,我们将探索加入LSTM/RNN模型中的atten...转载 2018-06-02 21:56:17 · 1976 阅读 · 0 评论 -
Attention和增强循环神经网络
https://blog.csdn.net/a398942089/article/details/53888797CHRIS OLAH,SHAN CARTER 译:Krse Lee原文:http://distill.pub/2016/augmented-rnns译者序: 本文重点讲述的是一种被称为attention的方法,有的人将其译为“聚焦”,但觉得这种翻译将原文对神经网络拟人化的手...转载 2018-06-14 21:51:40 · 629 阅读 · 0 评论