/*
问题描述
给定一个N阶矩阵A,输出A的M次幂(M是非负整数)
例如:
A =
1 2
3 4
A的2次幂
7 10
15 22
输入格式
第一行是一个正整数N、M(1<=N<=30, 0<=M<=5),表示矩阵A的阶数和要求的幂数
接下来N行,每行N个绝对值不超过10的非负整数,描述矩阵A的值
输出格式
输出共N行,每行N个整数,表示A的M次幂所对应的矩阵。相邻的数之间用一个空格隔开
样例输入
2 2
1 2
3 4
样例输出
7 10
15 22
*/
问题描述
给定一个N阶矩阵A,输出A的M次幂(M是非负整数)
例如:
A =
1 2
3 4
A的2次幂
7 10
15 22
输入格式
第一行是一个正整数N、M(1<=N<=30, 0<=M<=5),表示矩阵A的阶数和要求的幂数
接下来N行,每行N个绝对值不超过10的非负整数,描述矩阵A的值
输出格式
输出共N行,每行N个整数,表示A的M次幂所对应的矩阵。相邻的数之间用一个空格隔开
样例输入
2 2
1 2
3 4
样例输出
7 10
15 22
*/
#include<stdio.h>
void shuru( int [][30] , int );
void shuchu( int [][30] , int );
void mcjc( int [][30] , int [][30] ,int , int );
void chushi(int [][30] , int );
int main(void)
{
int n , m ;
int jz[30][30];
scanf("%d%d", &n , &m);
shuru( jz , n );
int cf[30][30];
chushi(cf , n);
mcjc( jz , cf , n , m );
shuchu( cf, n);
return 0 ;
}
void chushi(int jz[][30] , int n)
{
int i , j ;
for(i = 0; i < n; i ++ )
{
for( j = 0 ; j < n ; j ++)
{
if(i == j )
{
jz[i][j] = 1;
}
else
{
jz[i][j] = 0;
}
}
}
}
void mcjc( int jz[][30] , int cf[][30] , int n, int m)
{
int i , j , k;
while(m -- > 0 )
{
int zj[30][30]={0};
for(i = 0 ; i < n; i ++)
{
for(j = 0; j < n; j ++)
{
for( k = 0 ; k < n ; k ++)
{
zj[i][j]+=cf[i][k]*jz[k][j];
}
}
}
for(i = 0 ; i < n; i ++)
{
for(j = 0; j < n; j ++)
{
cf[i][j]=zj[i][j];
}
}
}
}
void shuchu( int jz[][30] , int n)
{
int i , j ;
for(i = 0 ; i < n ; i ++)
{
for(j = 0 ; j < n ; j ++)
{
printf("%d ",jz[i][j]);
}
putchar('\n');
}
}
void shuru( int jz[][30] , int n)
{
int i , j ;
for(i = 0 ; i < n ; i ++)
{
for(j = 0 ; j < n ; j ++)
{
scanf("%d",&jz[i][j]);
}
}
}