基础练习 矩阵乘法

/*
问题描述
  给定一个N阶矩阵A,输出A的M次幂(M是非负整数)
  例如:
  A =
  1 2
  3 4
  A的2次幂
  7 10
  15 22
输入格式
  第一行是一个正整数N、M(1<=N<=30, 0<=M<=5),表示矩阵A的阶数和要求的幂数
  接下来N行,每行N个绝对值不超过10的非负整数,描述矩阵A的值
输出格式
  输出共N行,每行N个整数,表示A的M次幂所对应的矩阵。相邻的数之间用一个空格隔开
样例输入
2 2
1 2
3 4
样例输出
7 10
15 22

*/
#include<stdio.h>
void shuru( int [][30] , int );
void shuchu( int [][30] , int );
void mcjc( int [][30] , int [][30] ,int , int );
void chushi(int [][30] , int );
int main(void)
{
	int n , m ;
	int jz[30][30];
	scanf("%d%d", &n , &m);
	shuru( jz , n  );
	int cf[30][30];
	chushi(cf , n);
	mcjc( jz , cf , n , m );
	shuchu( cf, n);
	return 0 ; 
}
void chushi(int jz[][30] , int n)
{
	int i , j ;
	for(i = 0; i < n; i ++ )
	{
		for( j = 0 ; j < n ; j ++)
		{
			if(i == j )
			{
				jz[i][j] = 1;
			}
			else
			{
				jz[i][j] = 0;
			}
		}
	}
} 
void mcjc( int jz[][30] , int cf[][30] , int n, int m)
{
	int i , j  , k;
	
	while(m -- > 0 )
	{
		int zj[30][30]={0};
		for(i = 0 ; i < n; i ++)
		{
			for(j = 0; j < n; j ++)
			{
				for( k = 0 ;  k < n ; k ++)
				{
					zj[i][j]+=cf[i][k]*jz[k][j];
				}
			}
		}
		for(i = 0 ; i < n; i ++)
		{
			for(j = 0; j < n; j ++)
			{
				cf[i][j]=zj[i][j];
			}
		}
		
	}
}
void shuchu( int jz[][30] , int n)
{
	int i , j ;
	for(i = 0 ; i < n ; i ++)
    {
    	for(j = 0 ; j < n ; j ++)
    	{
    		printf("%d ",jz[i][j]);
		}
		putchar('\n');
	}
}
void shuru( int jz[][30] , int n)
{
	int i , j ;
	for(i = 0 ; i < n ; i ++)
    {
    	for(j = 0 ; j < n ; j ++)
    	{
    		scanf("%d",&jz[i][j]);
		}
	}
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值