3DFaceGAN: Adversarial Nets for 3D Face Representation, Generation, and Translation论文泛读

本文探讨3DFaceGAN如何利用GAN处理3D人脸重建、翻译和多标签翻译任务。通过将3D顶点信息映射到uv图,解决了3D数据在深度学习中的输入难题。文章介绍了其预处理方法,包括顶点到uv图的映射和插值。此外,3DFaceGAN的生成器和鉴别器采用预训练的自编码器结构,且在训练中仅更新鉴别器的编码器部分。
摘要由CSDN通过智能技术生成

3DFaceGAN: Adversarial Nets for 3D Face Representation, Generation, and Translation论文泛读

(MLA引用格式
Moschoglou, Stylianos, et al. “3dfacegan: Adversarial nets for 3d face representation, generation, and translation.” arXiv preprint arXiv:1905.00307 1.2 (2019).)

本文是利用GAN网络处理关于三维人脸重建,三维人脸翻译,三维人脸,多标签三维人脸翻译的任务。
(对于人脸翻译,没有搞懂这个是什么,按文中的意思应该是根据低分辨率的点云生成高分辨率的点云,应该是类似于图像翻译的内容吧。图像作为一种交流媒介,有很多种表达方式,比如灰度图、彩色图、梯度图甚至人的各种标记等。在这些图像之间的转换称之为图像翻译,是一个图像生成任务。)
作者称本文是第一个使用GAN方法解决此类问题的。
针对三维网格数据以往的方法有:

  • 几何深度学习方法
    自编码器结构

  • 将三维点的坐标连接到一维向量中,并利用完全连接的层来正确解码点云的结构
    丢失了三角剖分和空间相邻信息,参数量大,难以训练。

  • 利用PCA学习已有模型的参数
    公式限制了三维表示的几何细节,并限制在其潜在的模型空间

  • 体素回归网络
    由于离散化,预测的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值