零件三维缺陷检测相关基础知识

本文介绍了三维缺陷检测的基础知识,包括非接触式三维数据获取方法,如激光扫描、光栅投影和SFX方法。重点讨论了光栅投影法、SFS和SFS在三维重建中的应用,并强调了相机标定的重要性。接着,讲述了三维点云数据配准的关键,如特征匹配和ICP算法。最后,提到了缺陷检测定位的基本步骤,即配准后的点云差值分析。
摘要由CSDN通过智能技术生成

零件三维缺陷检测相关基础知识

看了几篇文献,总结下来三维缺陷检测的过程,总的来说分为:

  • 零件表面的三维数据获取
  • 根据零件的三维数据信息进行三维重建
  • 目标点云与标准点云的配准
  • 配准后的点云做差得到缺陷信息

当然这里面还要涉及到很多的知识,下面就从前3个方面入手,分别记录一些基础知识。

三维图像测量可分为接触式和非接触式,接触式测量是利用专业仪器直接检 测物体或环境,但接触时可能会对被测物体产生不可逆的损坏或污染,非接触式测量不直接接触被测物体,利用不同方式获取物体二维信息(如距离、投影、点坐标等),再通过计算机技术识别并重构三维物体。非接触式测量,根据光是否主动投射又可分为主动式和被动式,被动式测量不设置专门的光,而是利用外部光源的反射获取投影信息;主动式测量则主动像待测环境中投射光源(如结构光、激光),获取点云信息后再进行三维重建

三维数据获取

在这里插入图片描述
图1.三维数据获取方法

现在针对面临的任务,激光扫描的方法可以首先排除掉。
光栅投影检测实际上也属于结构光扫描,严格来说是多线结构光扫描。与线结构光扫描不同的是,物体无需沿垂直于结构光投射面相对平移。

SFX 是从单幅或多幅图像获得物体表面三维信息。这里的 X 可以代表 Stereo(光度),Texture(纹理),Shading(阴影),Motion(运动),Contour(轮廓)等。
SFS(Shape from Stereo,光度立体恢复法),是从在不同光照环境下,分别拍摄物体二维图像,然后从序列图像中求取物体表面的梯度信息。这种方法属于多幅图像求取表面三维信息,要求在测量环境中能提供变化的不同光照效果,对硬件环境要求较高。
SFT(Shape from Texture,纹理立体恢复法)将物体表面的纹理当作是一个个纹理单元组成,这些纹理单元周期重复出现,但是不同的位置,其纹理单元的朝向不同,所以,分析纹理单元的朝向,可以获得物体表面的朝向,即梯度信息。这种方法测量精度较低。
SFS(Shape from Shading, 阴影立体恢复法࿰

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值