一句话总结:
模拟退火引入了随机因素,以一定的概率来接受一个比当前解要差的解,因此可能会跳出这个局部最优解,达到全局最优解。
模拟退火算法描述:
- 若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动。
- 若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)。
这里的“一定的概率”的计算参考了金属冶炼的退火过程(温度越高,粒子内能越高,温度发生跳变的概率也大,温度越低,越趋于稳定),这也是模拟退火算法名称的由来。
爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。
模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。
一、大白话解析模拟退火算法
模拟退火(SA,Simulated Annealing)思想
爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以下图为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。
模拟退火算法描述:
- 若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动。
- 若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)。
这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。
根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:
P ( d E ) = e x p ( d E ( k T ) P(dE) = exp( \frac{dE}{(kT}) P(dE)=exp((kTdE)
爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。
模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。
二、模拟退火算法从原理到实战【基础篇】
模拟退火算法新解的产生和接受可分为如下四个步骤:
-
由一个产生函数从当前解产生一个位于解空间的新解;
为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。 -
计算与新解所对应的目标函数差
因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。 -
判断新解是否被接受
判断的依据是一个接受准则,最常用的接受准则是 Metropolis 准则: 若Δt′<0
则接受S′
作为新的当前解S
,否则以概率exp(-Δt′/T)
接受S′
作为新的当前解S
。 -
新解代替当前解
当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。模拟退火算法与初始值无关,算法求得的解与初始解状态 S (是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率 l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性
- 模拟退火算法其实也是一个贪心算法,只不过加入了随机因素,才有可能跳出局部最优解,得到全局最优解
三、模拟退火算法学习笔记
- 里面有很多 matlab 的实例,很有趣