BZOJ 1965: [Ahoi2005]SHUFFLE 洗牌【快速幂】

扑克牌洗牌算法
本文介绍了一种扑克牌洗牌游戏的算法实现,通过数学推导得出快速计算洗牌后特定位置扑克牌面值的方法。

##1965: [Ahoi2005]SHUFFLE 洗牌
Time Limit: 3 Sec Memory Limit: 64 MB

Description

为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动。 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联提议用扑克牌打发长途旅行中的无聊时间。玩了几局之后,大家觉得单纯玩扑克牌对于像他们这样的高智商人才来说太简单了。有人提出了扑克牌的一种新的玩法。 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取下面一叠的第一张作为新的一叠的第一张,然后取上面一叠的第一张作为新的一叠的第二张,再取下面一叠的第二张作为新的一叠的第三张……如此交替直到所有的牌取完。 如果对一叠6张的扑克牌1 2 3 4 5 6,进行一次洗牌的过程如下图所示:
[外链图片转存失败(img-1YA0RaZB-1563190134094)(https://lydsy.com/JudgeOnline/images/1965.jpg)]
从图中可以看出经过一次洗牌,序列1 2 3 4 5 6变为4 1 5 2 6 3。当然,再对得到的序列进行一次洗牌,又会变为2 4 6 1 3 5。 游戏是这样的,如果给定长度为N的一叠扑克牌,并且牌面大小从1开始连续增加到N(不考虑花色),对这样的一叠扑克牌,进行M次洗牌。最先说出经过洗牌后的扑克牌序列中第L张扑克牌的牌面大小是多少的科学家得胜。小联想赢取游戏的胜利,你能帮助他吗?

Input

有三个用空格间隔的整数,分别表示N,M,L (其中0< N ≤ 10 ^ 10 ,0 ≤ M ≤ 10^ 10,且N为偶数)。

Output

单行输出指定的扑克牌的牌面大小。

Sample Input

6 2 3

Sample Output

6

题解

我们可以看出规律:i的下一个位置是(i2)%(n+1)
那么就可以推出公式x
2^m==l(mod n+1)
转移得x=((n/2+1)^m*l)%(n+1)
所以就快速幂就可以了。

代码如下

#include<cstdio>
#define LL long long
using namespace std;
LL n,m,L;
LL qsm(LL a,LL b){
	LL ans=1,w=a;
	for(;b;b>>=1,w=(w*w)%(n+1)) if(b&1) ans=(ans*w)%(n+1);
	return ans;
}
int main(){
	scanf("%lld%lld%lld",&n,&m,&L);
	printf("%lld\n",(qsm(n/2+1,m)*L)%(n+1));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值