离散数学谓词逻辑

本文介绍了谓词逻辑的基本概念,包括推理规则、原子公式、合式公式和量词等。通过实例展示了如何将日常语句符号化为谓词逻辑形式,并阐述了如何进行逻辑推理,如前提引用、逻辑结果引用和附加前提规则。同时,讨论了个体词、谓词和命题函数在逻辑表达中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

命题逻辑的推理理论

推理的基本概念:设G,H是公式,对任意解释I,如果I满足G,那么I满足H,则称H是G的逻辑
结果(或称G蕴涵H),记为G⇒H,此时称G为前提,H为结论。
推广:设G1,G2,…,Gn,H是公式,称H是G1,G2,…,Gn的逻辑结果(G1,G2,…,Gn共同蕴涵H),当
且仅当(G1∧G2∧…∧Gn)→H为永真式,记为G1,G2,…,Gn⇒H,称G1,G2,…,Gn称为一组前提,用集合Г来表示,记Г={G1,G2,…,Gn}。H称为结论,则可简记记为Г⇒H
在这里插入图片描述
推理规则:
①规则P(称为前提引用规则):在推导的过程中,可随时引入前提集合中的任意一个前提;
②规则T(逻辑结果引用规则):在推导的过程中,可以随时引入公式S,该公式S是由其前的一个或多个公式推导出来的逻辑结果。
③规则CP(附加前提规则):如果能从给定的前提集合Г与公式P推导出S,则能从此前提集合Г推导出P→S。

谓词

1.谓词的概念与表示
在谓词逻辑中,原子命题分解成个体词和谓词.
·个体词
是可以独立存在的客体,它可以是具体事物或抽象的概念
个体词分个体常量(用a,b,c,…表示)和个体变量(用x,y,z,…表示);
·谓词
是用来刻划个体词的性质或事物之间关系的词.
含n个个体词的谓词称n元谓词。
2.命题函数与量词
·(简单)命题函数
即“谓词(若干客体变项)”。
逻辑符号化

例 用谓词逻辑符号化下述语句:
(1)天下乌鸦一般黑;
(2)在美国留学的学生未必都是亚洲人;
(3)每个实数都存在比它大的另外的实数;
(4)尽管有人很聪明,但未必一切人都聪明;
解:(1)天下乌鸦一般黑
在这里插入图片描述
(2)在美国留学的学生未必都是亚洲人
设A(x):x是亚洲人;H(x):x是在美国留学的学生,
在这里插入图片描述
(3)每个实数都存在比它大的另外的实数
设R(x):x是实数;L(x,y):x小于y,则:
在这里插入图片描述
(4)尽管有人很聪明,但未必一切人都聪明
设M(x):x是人;C(x):x很聪明,则:
在这里插入图片描述
知识点2 谓词公式与解释、变元的约束
1.谓词公式与解释
·原子公式
若P(x1,x2,…,xn)是n元谓词,t1
,t2
,…,tn
是项,则称P(t1,t2,…,tn)为原子谓词公式,简称原子公式;
·谓词公式
满足下列条件的表达式,称为合式公式,简称公式。
①原子公式是合式公式;
②若G,H是合式公式,则在这里插入图片描述

也是合式公式;
③若G是合式公式,x是个体变量,则在这里插入图片描述

G也是合式公式;
④仅仅由① -③产生的表达式才是合式公式。

### 谓词逻辑的概念和意义 #### 定义与基本构成 谓词逻辑是对命题逻辑的一种扩展,在其中引入了量词来描述对象及其属性间的关系。通过增加量词这一特性,使得能够更精确地表达关于个体以及它们之间关系的信息[^1]。 #### 表达能力增强 相比于仅能处理简单陈述句真假性的命题逻辑,谓词逻辑允许讨论更为复杂的情况——即涉及多个实体及其相互作用的情形。例如,“所有人都喜欢苹果”,这句话无法直接用命题逻辑表述;但在谓词逻辑里,可以通过全称量化器∀(读作“对于每一个”)配合特定的谓词P(x),如P(x):=x likes apples,从而准确传达该含义[^3]。 #### 关键组成部分 - **常量符号**:代表具体事物的名字。 - **变量符号**:用于指代任意的对象。 - **函数符号**:用来定义从一组输入到另一组输出之间的映射。 - **谓词符号**:表示某些性质或二元以上的关系。 - **量词**:分为两种主要形式: - ∀ (forall) : 全称量词,意为“对所有的...都成立” - ∃ (exists) : 存在量词,意味着“至少有一个…” #### 实际应用案例 考虑这样一个例子:“存在某个学生既聪明又勤奋。” 使用∃作为存在量词,并设C(x)=x is smart; D(x)=x works hard,则上述语句可被写成`∃x(C(x) ∧ D(x))`的形式。 #### 论证有效性的重要性 数理逻辑关注如何利用有效的推理规则得出合理的结论。这里所说的合理性指的是论证过程中的每一步骤都是按照公认的逻辑法则来进行操作的结果,而非依赖外部因素决定其正确与否。因此,在构建基于谓词逻辑系统的证明过程中,确保使用的每一项推断均遵循已知的有效模式至关重要[^2]。 #### 封闭合式公式的意义 当一个公式内没有任何未绑定(自由)的变量时,这样的结构就被称为封闭合式公式或者说是一个闭式。只有在这种情况下,整个表达才能被视为真正的命题并赋予具体的真值(T/F)[^4]。 ```python def evaluate_closed_formula(formula): """评估给定的闭式公式的真假""" # 假设formula已经过解析并且确实是个闭式... pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值