命题逻辑的推理理论
推理的基本概念:设G,H是公式,对任意解释I,如果I满足G,那么I满足H,则称H是G的逻辑
结果(或称G蕴涵H),记为G⇒H,此时称G为前提,H为结论。
推广:设G1,G2,…,Gn,H是公式,称H是G1,G2,…,Gn的逻辑结果(G1,G2,…,Gn共同蕴涵H),当
且仅当(G1∧G2∧…∧Gn)→H为永真式,记为G1,G2,…,Gn⇒H,称G1,G2,…,Gn称为一组前提,用集合Г来表示,记Г={G1,G2,…,Gn}。H称为结论,则可简记记为Г⇒H
推理规则:
①规则P(称为前提引用规则):在推导的过程中,可随时引入前提集合中的任意一个前提;
②规则T(逻辑结果引用规则):在推导的过程中,可以随时引入公式S,该公式S是由其前的一个或多个公式推导出来的逻辑结果。
③规则CP(附加前提规则):如果能从给定的前提集合Г与公式P推导出S,则能从此前提集合Г推导出P→S。
谓词
1.谓词的概念与表示
在谓词逻辑中,原子命题分解成个体词和谓词.
·个体词
是可以独立存在的客体,它可以是具体事物或抽象的概念
个体词分个体常量(用a,b,c,…表示)和个体变量(用x,y,z,…表示);
·谓词
是用来刻划个体词的性质或事物之间关系的词.
含n个个体词的谓词称n元谓词。
2.命题函数与量词
·(简单)命题函数
即“谓词(若干客体变项)”。
逻辑符号化
例 用谓词逻辑符号化下述语句:
(1)天下乌鸦一般黑;
(2)在美国留学的学生未必都是亚洲人;
(3)每个实数都存在比它大的另外的实数;
(4)尽管有人很聪明,但未必一切人都聪明;
解:(1)天下乌鸦一般黑
(2)在美国留学的学生未必都是亚洲人
设A(x):x是亚洲人;H(x):x是在美国留学的学生,
(3)每个实数都存在比它大的另外的实数
设R(x):x是实数;L(x,y):x小于y,则:
(4)尽管有人很聪明,但未必一切人都聪明
设M(x):x是人;C(x):x很聪明,则:
知识点2 谓词公式与解释、变元的约束
1.谓词公式与解释
·原子公式
若P(x1,x2,…,xn)是n元谓词,t1
,t2
,…,tn
是项,则称P(t1,t2,…,tn)为原子谓词公式,简称原子公式;
·谓词公式
满足下列条件的表达式,称为合式公式,简称公式。
①原子公式是合式公式;
②若G,H是合式公式,则
也是合式公式;
③若G是合式公式,x是个体变量,则
G也是合式公式;
④仅仅由① -③产生的表达式才是合式公式。