离散数学 谓词逻辑

谓词逻辑

基本概念

个体词: 可独立存在的客体
谓词: 用来说明个体的性质与个体间的关系,可分为一元谓词、二元谓词、n元谓词。
考点: 命题的谓词表达式
区分:个体常元与个体变元 分别对应着谓词常项与谓词变项(命题函数)。
eg: A(a) , H(a,b) 对比 A(x) , H(x,y)
个体域个体变动的取值范围
量词
1、全称量词: ∀ {\forall} 表示”所有的“、”每一个“、”一切“。
2、存在量词: ∃ {\exists} 表示“存在这样的x”、“某个x”、“至少有一个x”、“有一些x”。
考点:谓词逻辑符号化命题
在这里插入图片描述
在这里插入图片描述
Note: ∀ {\forall} 后跟条件连接词、 ∃ {\exists} 后跟合取连接词。
定义: 量词的辖域、约束变元(约束出现)、自由变元(自由出现)
举例说明即可:
在这里插入图片描述
需要注意的是辖域是指的紧跟着的括号内的部分,比如圈2中y的辖域不包括最后的R部分。

谓词公式的等价

命题公式推广

用命题逻辑中的等价式推广到谓词演算中使用。

量词否定规律

量词前(后)的 ¬ {\neg} ¬移到量词的后(前),则将 ∀ {\forall} ∃ {\exists} 交换即可。

量词辖域的扩张与收缩

若作用域中一项为一个命题(即不含约束变元的公式)则可将该命题移到量词作用域之外。

量词分配律

注意只有 ∀ {\forall} ∧ {\land} 的分配,及 ∃ {\exists} ∨ {\lor} 的分配。
在这里插入图片描述
典型例题1:消去量词在这里插入图片描述
典型例题2:求前束范式
简单来说,量词前提,后面部分不再包括量词即可。(不唯一)
在这里插入图片描述
Note: 注意这的换名规则。

推理规则

在这里插入图片描述
1、US全称指定规则
2、ES存在指定规则
3、UG全称推广规则
4、EG存在推广定理
注意: 2中c为存在辖域内的某个元素、3中y为辖域内的任意元素。

谓词逻辑的推理可以用几道题练习一下。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值