点个关注吧谢谢!
定理:设正整数 m m m,给定一个整数 r ∈ Z m r\in \mathbb{Z}_m r∈Zm,若 g c d ( r , m ) = 1 gcd(r,m)=1 gcd(r,m)=1,那么存在逆元 k ∈ Z m k\in\mathbb{Z}_m k∈Zm使得 r k = 1 ( m o d m ) rk=1(mod~m) rk=1(mod m)。
k k k称为 r r r在模 m m m下的逆元。
证:前面文章已经介绍过 g c d ( a , b ) = a x + b y gcd(a,b)=ax+by gcd(a,b)=ax+by。那么 r x + m y = 1 rx+my=1 rx+my=1,因此有 r x = 1 ( m o d m ) rx=1(mod~m) rx=1(mod m)。所以 x x x模 m m m后便是 r r r的逆元。
示例:
求
11
(
m
o
d
26
)
11(mod26)
11(mod26)的逆元:
利用辗转相除法
26
=
2
∗
11
+
4
26=2*11+4
26=2∗11+4
11
=
2
∗
4
+
3
11=2*4+3
11=2∗4+3
4
=
1
∗
3
+
1
4=1*3+1
4=1∗3+1
因此:
1
=
4
−
1
∗
3
1=4-1*3
1=4−1∗3
=
4
−
(
11
−
2
∗
4
)
=4-(11-2*4)
=4−(11−2∗4)
=
3
∗
4
−
11
=3*4-11
=3∗4−11
=
3
∗
(
26
−
2
∗
11
)
−
11
=3*(26-2*11)-11
=3∗(26−2∗11)−11
=
3
∗
26
−
7
∗
11
=3*26-7*11
=3∗26−7∗11
−
7
=
19
(
m
o
d
26
)
-7=19(mod26)
−7=19(mod26),因此
11
(
m
o
d
26
)
11(mod26)
11(mod26)的逆元为19。