数论11-乘法逆元

本文介绍了如何证明如果两个整数的最大公约数为1,则存在模逆元,并通过辗转相除法求解11mod26的逆元为19,展示了模运算在数学中的应用。
摘要由CSDN通过智能技术生成

点个关注吧谢谢!

定理:设正整数 m m m,给定一个整数 r ∈ Z m r\in \mathbb{Z}_m rZm,若 g c d ( r , m ) = 1 gcd(r,m)=1 gcd(r,m)=1,那么存在逆元 k ∈ Z m k\in\mathbb{Z}_m kZm使得 r k = 1 ( m o d   m ) rk=1(mod~m) rk=1(mod m)

k k k称为 r r r在模 m m m下的逆元。

证:前面文章已经介绍过 g c d ( a , b ) = a x + b y gcd(a,b)=ax+by gcd(a,b)=ax+by。那么 r x + m y = 1 rx+my=1 rx+my=1,因此有 r x = 1 ( m o d   m ) rx=1(mod~m) rx=1(mod m)。所以 x x x m m m后便是 r r r的逆元。

示例:
11 ( m o d 26 ) 11(mod26) 11(mod26)的逆元:
利用辗转相除法
26 = 2 ∗ 11 + 4 26=2*11+4 26=211+4
11 = 2 ∗ 4 + 3 11=2*4+3 11=24+3
4 = 1 ∗ 3 + 1 4=1*3+1 4=13+1
因此:
1 = 4 − 1 ∗ 3 1=4-1*3 1=413
= 4 − ( 11 − 2 ∗ 4 ) =4-(11-2*4) =4(1124)
= 3 ∗ 4 − 11 =3*4-11 =3411
= 3 ∗ ( 26 − 2 ∗ 11 ) − 11 =3*(26-2*11)-11 =3(26211)11
= 3 ∗ 26 − 7 ∗ 11 =3*26-7*11 =326711
− 7 = 19 ( m o d 26 ) -7=19(mod26) 7=19(mod26),因此 11 ( m o d 26 ) 11(mod26) 11(mod26)的逆元为19。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

帅逼码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值