RNN处理不定长输入

RNN处理不定长输入

RNN模型:

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()

        self.hidden_size = hidden_size

        self.u = nn.Linear(input_size, hidden_size)
        self.w = nn.Linear(hidden_size, hidden_size)
        self.v = nn.Linear(hidden_size, output_size)

        self.tanh = nn.Tanh()
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, inputs, hidden):

        u_x = self.u(inputs)

        hidden = self.w(hidden)
        hidden = self.tanh(hidden + u_x)

        output = self.softmax(self.v(hidden))

        return output, hidden

    def initHidden(self):
        return torch.zeros(1, self.hidden_size)
rnn = RNN(n_input, n_hidden, n_categories)
rnn = RNN(57, 128, 18)

RNN训练过程:

    for i in range(line_tensor.size()[0]):
        output, hidden = rnn(line_tensor[i], hidden)

计算loss后的反向传播:

    loss = criterion(output, category_tensor)
    loss.backward()

梯度下降:

    for p in rnn.parameters():
        p.data.add_(-learning_rate, p.grad.data)

在这里插入图片描述
ot:目标分类数,在这里应该是18和下面的labels对应上
这里的xt用的是独热向量,表示58种输入
hidden:

在这里插入图片描述
在这里插入图片描述

line_tensor:

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

写个案例:

从csv文件中进行数据生成:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

import pandas as pd
import torch
import math
import random
# ============================ step 1/5 数据 ================================
data = pd.read_csv("./data/traffic_28_classifier1.csv")
# data.dropna(axis=0,how='any') #drop all rows that have any NaN values

serises_num=3
serises_len=15
label_tag=13

def arrsToTensor(randomSample):
    tensor = torch.zeros(serises_num, 1, serises_len)  # serises_num是一个样本的序列长度  serises_len是每一个序列的长度  1是pytorch的格式需要
    for i in range(len(randomSample)):
        tensor[i][0] = torch.tensor(randomSample.iloc[i].values)
    return tensor



def randomTrainingExample():
    # 1. 样本数sampleCounts
    # 2. 随机取[1,sampleCounts]中的值randomSample
    # 3. 获取样本数据,data.iloc[randomSampleNum:randomSampleNum+3]
    sampleCounts = data.shape[0]-2
    randomSampleNum = random.randint(1,sampleCounts-2) # 最后一个样本不取,因为没有标签
    #print(randomSampleNum)
    #length_data=data.shape[0]
    #test=data.iloc[0]
    randomSample=data.iloc[randomSampleNum:randomSampleNum+3]
    arrs_tensor = arrsToTensor(randomSample)  # arrs_data
    label_data=data.iloc[randomSampleNum + 3]
    randomSampleLabel=data.iloc[randomSampleNum+3][label_tag] # label
    #print(randomSampleLabel)
    category_tensor = torch.tensor([randomSampleLabel], dtype=torch.long)

    return category_tensor, arrs_tensor




输入为1*15的3个连续向量
输出为0,1的二分类任务

main.py

from model import RNN
from data_loader import randomTrainingExample
import torch.nn as nn
import torch
# ============================ step 0/5 参数设置 ============================
device = torch.device("cpu")
learning_rate = 0.005
n_iters = 200000
n_hidden = 128
n_input = 15
n_categories = 2
# ============================ step 1/5 数据 ================================

# from data_loader import randomTrainingExample

# ============================ step 2/5 模型 ================================


# rnn = RNN(n_input, n_hidden, n_categories)
rnn = RNN(n_input, n_hidden, n_categories)
rnn.to(device)




# ============================ step 3/5 损失函数 ============================

criterion = nn.NLLLoss()

# ============================ step 4/5 优化器 ==============================

# for p in rnn.parameters():  # 优化器
#     p.data.add_(-learning_rate, p.grad.data)


# ============================ step 5/5 训练 ================================

def train(category_tensor, arrs_tensor):
    hidden = rnn.initHidden()

    rnn.zero_grad()

    arrs_tensor = arrs_tensor.to(device)
    hidden = hidden.to(device)
    category_tensor = category_tensor.to(device)

    for i in range(arrs_tensor.size()[0]):
        output, hidden = rnn(arrs_tensor[i], hidden)

    loss = criterion(output, category_tensor)
    loss.backward()

    # Add parameters' gradients to their values, multiplied by learning rate
    for p in rnn.parameters():  # 优化器
        p.data.add_(-learning_rate, p.grad.data)

    return output, loss.item()

for iter in range(1, n_iters + 1):

    category_tensor, arrs_tensor = randomTrainingExample()
    # training
    output, loss = train(category_tensor, arrs_tensor)
    print(loss)


# =========================== inference ====================================

model.py

import torch.nn as nn
import torch

class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()

        self.hidden_size = hidden_size

        self.u = nn.Linear(input_size, hidden_size)
        self.w = nn.Linear(hidden_size, hidden_size)
        self.v = nn.Linear(hidden_size, output_size)

        self.tanh = nn.Tanh()
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, inputs, hidden):

        u_x = self.u(inputs)

        hidden = self.w(hidden)
        hidden = self.tanh(hidden + u_x)

        output = self.softmax(self.v(hidden))

        return output, hidden

    def initHidden(self):
        return torch.zeros(1, self.hidden_size)

data_loader.py

import pandas as pd
import torch
import math
import random
# ============================ step 1/5 数据 ================================
data = pd.read_csv("./data/traffic_28_classifier1.csv")
# data.dropna(axis=0,how='any') #drop all rows that have any NaN values

serises_num=3
serises_len=15
label_tag=13

def arrsToTensor(randomSample):
    tensor = torch.zeros(serises_num, 1, serises_len)  # serises_num是一个样本的序列长度  serises_len是每一个序列的长度  1是pytorch的格式需要
    for i in range(len(randomSample)):
        tensor[i][0] = torch.tensor(randomSample.iloc[i].values)
    return tensor



def randomTrainingExample():
    # 1. 对所有的行数除以3,向下取整得出样本数sampleCounts
    # 2. 随机取[1,sampleCounts]中的值randomSample
    # 3. 获取样本数据,randomSample*3, data[randomSample*3-3,randomSample*3]
    sampleCounts = data.shape[0]-2
    randomSampleNum = random.randint(1,sampleCounts-2) # 最后一个样本不取,因为没有标签
    #print(randomSampleNum)
    #length_data=data.shape[0]
    #test=data.iloc[0]
    randomSample=data.iloc[randomSampleNum:randomSampleNum+3]
    arrs_tensor = arrsToTensor(randomSample)  # arrs_data
    label_data=data.iloc[randomSampleNum + 3]
    randomSampleLabel=data.iloc[randomSampleNum+3][label_tag] # label
    #print(randomSampleLabel)
    category_tensor = torch.tensor([randomSampleLabel], dtype=torch.long)

    return category_tensor, arrs_tensor


# def traffic_data_loader():
#     # 每取三行,对第四行的traffic进行判断,如果第四行的traffic是1,就是正样例,如果traffic=0,就是负样例
#
#     positive = pd.DataFrame()
#     negective = pd.DataFrame()
#
#     for i in range(3,data.shape[0]):
#         if data.iloc[i][13]== 1:
#             positive=positive.append(data.iloc[i-3:i])
#             #print(data.iloc[i-3:i])
#         elif data.iloc[i][13]== 0:
#             negective=negective.append(data.iloc[i-3:i])
#             #print(data.iloc[i-3:i])
#
#     negective.to_csv("negective.csv")
#     positive.to_csv("positive.csv")
#
#     data_single=data.iloc[1]
#     data_single=data_single.values
#     data_single
#     t=torch.tensor(data_single)
#
#
#     tensor = torch.zeros(3, 1, 15) # 3是一个样本的序列长度  15是每一个序列的长度  1是pytorch的格式需要
#     tensor[0][1]= t;





    # return  tensor

if __name__ == "__main__":

   category_tensor, arrs_tensor=randomTrainingExample()
   print(category_tensor, arrs_tensor)

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 在使用LSTM(短期记忆网络)进行文本序列处理时,遇到数据不等的问题是比较常见的情况。PyTorch的DataLoader可以帮助我们有效地处理这种情况。 首先,我们需要将数据进行预处理,并将其转换为适应LSTM模型输入的格式。通常,我们会使用分词技术将文本分割为单词或子词,并为每个单词或子词分配一个唯一的索引。然后,我们可以将每个序列中的单词索引转换为张量,并使用Packing技术将它们打包为一个批次。 其次,要在PyTorch中处理不等的序列,可以使用Collate函数来自定义一个处理数据的函数。Collate函数以批次数据作为输入,并在其中对数据进行处理。例如,在Collate函数中,我们可以使用torch.nn.utils.rnn.pad_sequence函数对序列进行填充,使它们的度相等。 然后,我们需要指定一个Sampler来确定每个批次的数据样本。在处理不等序列时,通常建议使用Sampler来根据数据度对样本进行排序,以使每个批次的数据样本度相对接近。 最后,在创建DataLoader对象时,我们可以通过设置参数drop_last=True来避免最后一个批次中的样本度小于其他批次。这样做可以确保每个批次的数据样本度一致,并且减少处理不等序列的复杂性。 综上所述,使用PyTorch的DataLoader和一些预处理技术,我们可以有效地处理数据不等的情况,并将其用于训练和评估LSTM等序列模型。 ### 回答2: 在使用PyTorch中的数据加载器(DataLoader)时,如果我们处理的是不等的数据序列并使用LSTM模型,我们需要考虑如何处理这种情况。 首先,我们需要确保我们的数据已经预处理为适当的格式。对于不等的数据序列,我们需要将它们填充或裁剪为相同的度。一种常见的方法是使用填充(padding)来将所有序列扩展到最序列的度。我们可以使用PyTorch的`pad_sequence`函数来实现这一步骤。对于较短的序列,我们可以使用特定的填充值,如0,进行填充。 接下来,我们需要创建一个自定义的数据集类来处理我们的数据。这个类应该提供`__getitem__`和`__len__`方法。在`__getitem__`方法中,我们需要根据索引获取填充后的序列,并返回它们以及对应的标签。我们还可以使用`collate_fn`函数来对获取的批次数据进行进一步处理,以适应LSTM模型的输入要求。 然后,我们可以使用PyTorch的`DataLoader`来加载我们的数据集。在初始化`DataLoader`时,我们需要设置`collate_fn`参数为我们自定义的处理函数,以确保加载器能够正确处理不等的数据序列。此外,我们还应该选择适当的`batch_size`、`shuffle`和`num_workers`等参数。 最后,在训练模型时,我们需要在LSTM模型的`forward`方法中处理不等的数据序列。这可以通过在LSTM模型的输入中指定序列的度或使用动态计算图的方法来实现。 总之,当我们有不等的数据序列并使用LSTM模型时,我们需要对数据进行适当的预处理,创建自定义的数据集类来处理数据,使用`DataLoader`加载器以及在模型中适当地处理不等的数据序列。通过这些步骤,我们可以成功处理不等的数据序列并应用于LSTM模型的训练。 ### 回答3: 在使用PyTorch的Dataloader加载数据时,遇到数据不等的情况,并且需要将这些数据传入LSTM模型进行训练。这个问题可以有几种解决方案。 第一种方案是使用PyTorch提供的pad_sequence函数将数据进行填充,使其等。pad_sequence函数会找到所有数据中最的序列,然后在其他序列末尾填充0,使它们的度与最序列相等。这样处理后的数据可以作为模型的输入进行训练。需要注意的是,LSTM模型需要将数据按照序列度进行排序,以便在训练过程中使用pack_padded_sequence函数进行处理。 第二种方案是使用torch.nn.utils.rnn.pack_sequence函数将数据打包成一个批次。该函数会将每个序列度存储下来,并按照序列度降序排列,再将序列内容打包成一个Tensor。在训练过程中,可以使用pack_padded_sequence函数对打包后的数据进行处理,提高模型的训练效率。 第三种方案是对数据进行随机舍弃或截断,使得所有序列等。这种方法可能会导致数据丢失一部分信息,但在一定程度上可以减少数据处理的复杂性。 以上是针对数据不等的情况,在使用PyTorch的Dataloader加载数据时可以采取的几种方案。根据具体的需求和应用场景,选择合适的方法来处理数据不等的情况,以提高模型的效果和训练速度。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值