Pascal VOC2012

该文章已生成可运行项目,

P a s c a l V O C 2012 Pascal VOC2012 PascalVOC2012


链接:https://pan.baidu.com/s/1gvs2uI8NDCzhovs4GbTd6A
提取码:1234


VOC2012数据集分为20类,包括背景为21类:

superclassclasses
Personperson
Animalbird, cat, cow, dog, horse, sheep
Vehicleaeroplane, bicycle, boat, bus, car, motorbike, train
Indoorbottle, chair, dining table, potted plant, sofa, tv/monitor
.
└── VOCdevkit     #根目录
    └── VOC2012   #不同年份的数据集,这里只下载了2012的,还有2007等其它年份的
        ├── Annotations        #存放xml文件,与JPEGImages中的图片一一对应,解释图片的内容等等
        ├── ImageSets          #该目录下存放的都是txt文件,txt文件中每一行包含一个图片的名称,末尾会加上±1表示正负样本
        │   ├── Action
        │   ├── Layout
        │   ├── Main
        │   └── Segmentation
        ├── JPEGImages         #存放源图片
        ├── SegmentationClass  #存放的是图像分类分割后的效果图片
        └── SegmentationObject #存放的是图像物体分割后的效果图片

图像分类分割和图像物体分割两种png图。

图像分类分割是在20种物体中,ground-turth图片上每个物体的轮廓填充都有一个特定的颜色,一共20种颜色,比如摩托车用红色表示,人用绿色表示。

图像物体分割则仅仅在一副图中生成不同物体的轮廓颜色即可,颜色自己随便填充。

图像分类分割

牛是一个类别,颜色相同
在这里插入图片描述

图像物体分割

猫和鸭不同的物体,颜色相同
在这里插入图片描述

这里我们用的图像分类来进行语义分割


分割划分

在这里插入图片描述

train.txt  1464

val.txt 1449

train.txt + val.txt = trainval.txt

trainval.txt 2913

从这里的图片名进行数据集的划分,原图和对应mask的查找。

该文章已生成可运行项目
### PASCAL VOC2012 数据集下载和使用说明 #### 一、数据集概述 PASCAL Visual Object Classes (VOC) Challenge 是一项针对目标分类、检测以及分割的任务挑战赛。PASCAL VOC2012 版本的数据集提供了丰富的图像资源用于训练机器学习模型,特别是计算机视觉领域中的物体识别任务[^2]。 #### 二、下载链接 官方提供的PASCAL VOC2012数据集可以通过访问指定网页来获取更多信息并完成下载操作。具体网址为:<http://host.robots.ox.ac.uk/pascal/VOC/voc2012/> 。此外,在该页面上还可以找到开发工具包(DevKit),其中包含了评估脚本和其他辅助文件[^3]。 #### 三、安装依赖库 为了能够顺利处理这些图片资料,建议先准备好必要的Python环境及相关第三方库: ```bash pip install numpy opencv-python matplotlib lxml cython tensorflow # 或者 pytorch,取决于个人需求 ``` 对于特定框架的支持可能还需要额外配置其他组件;比如TensorFlow用户可以考虑安装`tensorflow-datasets`以便更方便地加载此数据源。 #### 四、解压与结构化存储 下载完成后得到的是压缩包形式的档案,通常命名为`VOCtrainval_11-May-2012.tar`。将其放置于合适位置后执行如下命令进行解档: ```bash tar -xf VOCtrainval_11-May-2012.tar -C /path/to/dataset/ ``` 这将会创建一个名为`VOCdevkit`的新目录,并在其内部形成标准的子文件夹布局,如Annotations、JPEGImages等,便于后续读取和管理。 #### 五、验证完整性 确保所有预期存在的项目都已正确无误地被提取出来之后,可利用附带的检验程序确认其完好程度。进入刚才提到过的路径下运行下面这段简单的测试代码片段即可实现这一目的: ```python import os from pathlib import Path def check_dataset_integrity(root_dir): required_dirs = ['Annotations', 'ImageSets', 'JPEGImages'] missing_folders = [] for dir_name in required_dirs: folder_path = Path(root_dir).joinpath(dir_name) if not folder_path.exists(): missing_folders.append(str(folder_path)) if len(missing_folders)>0: print(f"The following directories are missing:{missing_folders}") else: print('All necessary folders exist.') check_dataset_integrity('/path/to/dataset/VOCdevkit/VOC2012') ``` 通过上述过程,应该已经成功完成了对PASCAL VOC2012数据集的基础准备工作。接下来就可以着手构建自己的算法原型或是参与竞赛活动了!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值